Dispersed vapor bubbles are the dominant rheology in cloud cavitation, and their size distribution is directly associated with cavitation noise and erosion. However, the numerical resolution of large numbers of dispersed bubbles remains a challenge. In this work, we establish a new cavitation model based on the population balance equation (PBE) that can predict the size distribution and spatiotemporal evolution of bubbles within cloud cavitation under different cavitation numbers. An expression for the phase transition source term without empirical parameters is derived based on the bubble size distribution (BSD) function, enabling the coupling of mass transfer in the governing equations with the PBE cavitation model. The cavitation model is solved alongside the Eulerian homogeneous mixture flow. The mass transfer between water and vapor, and the bubble coalescence and breakup under turbulent flows, are modeled to determine the BSD. The numerical model is carefully validated through comparisons with experimental results for cavitation flows on a wedge-shaped flat plate, and good agreement is achieved with respect to the pressure distribution, void fraction, and BSD. This confirms that our proposed cavitation model can accurately predict the void fraction and BSD within the cloud cavitation region.

1.
F.
Koukouvinis
and
M.
Gavaises
,
Cavitation and Bubble Dynamics: Fundamentals and Applications
(
Elsevier
,
2021
).
2.
E. J.
Foeth
,
C. W. H.
Van Doorne
,
T.
Van Terwisga
, and
B.
Wieneke
, “
Time resolved PIV and flow visualization of 3D sheet cavitation
,”
Exp. Fluids
40
(
4
),
503
513
(
2006
).
3.
H.
Kato
,
H.
Yamaguchi
,
M.
Maeda
,
Y.
Kawanami
, and
S.
Nakasumi
, “
Laser holographic observation of cavitation cloud on a foil section
,”
J. Vis.
2
(
1
),
37
50
(
1999
).
4.
Y.
Liu
,
H.
Zhang
,
W.
Zhang
, and
B.
Wang
, “
Bubble size distribution at early stage of hydrodynamic cloud cavitation
,”
Phys. Fluids
35
(
6
),
063305
(
2023
).
5.
B.
Stutz
and
J.-L.
Reboud
, “
Two-phase flow structure of sheet cavitation
,”
Phys. Fluids
9
(
12
),
3678
3686
(
1997
).
6.
C.
Wan
,
B.
Wang
,
Q.
Wang
,
Y.
Fang
,
H.
Liu
,
G.
Zhang
,
L.
Xu
, and
X.
Peng
, “
Probing and imaging of vapor–water mixture properties inside partial/cloud cavitating flows
,”
J. Fluids Eng.
139
(
3
),
031303
(
2017
).
7.
H.
Zhang
,
Y.
Liu
, and
B.
Wang
, “
Spatial-temporal features of the coherent structure of sheet/cloud cavitation flows using a frequency-weighted dynamic mode decomposition approach
,”
Phys. Fluids
33
(
5
),
053317
(
2021
).
8.
F. L.
Brandao
,
M.
Bhatt
, and
K.
Mahesh
, “
Numerical study of cavitation regimes in flow over a circular cylinder
,”
J. Fluid Mech.
885
,
A19
(
2020
).
9.
M.
Atashafrooz
, “
Influence of radiative heat transfer on the thermal characteristics of nanofluid flow over an inclined step in the presence of an axial magnetic field
,”
J. Therm. Anal. Calorim.
139
,
3345
3360
(
2020
).
10.
M.
Atashafrooz
,
H.
Sajjadi
, and
A. A.
Delouei
, “
Interacting influences of Lorentz force and bleeding on the hydrothermal behaviors of nanofluid flow in a trapezoidal recess with the second law of thermodynamics analysis
,”
Int. Commun. Heat Mass Transfer
110
,
104411
(
2020
).
11.
M.
Atashafrooz
, “
The effects of buoyancy force on mixed convection heat transfer of MHD nanofluid flow and entropy generation in an inclined duct with separation considering Brownian motion effects
,”
J. Therm. Anal. Calorim.
138
(
5
),
3109
3126
(
2019
).
12.
C. L.
Merkle
,
J. Z.
Feng
, and
P. E. O.
Buelow
, “
Computational modeling of the dynamics of sheet cavitation
,” in
Proceedings of Third International Symposium on Cavitations
,
Grenoble, France
(
1998
), Vol.
2
, pp.
307
311
.
13.
R. F.
Kunz
,
D. A.
Boger
,
D. R.
Stinebring
,
T. S.
Chyczewski
,
J. W.
Lindau
,
H. J.
Gibeling
,
S.
Venkateswaran
, and
T. R.
Govindan
, “
A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction
,”
Comput. Fluids
29
(
8
),
849
875
(
2000
).
14.
A. M.
Zhang
,
S. M.
Li
,
P.
Cui
,
S.
Li
, and
Y. L.
Liu
, “
A unified theory for bubble dynamics
,”
Phys. Fluids
35
,
033323
(
2023
).
15.
A.
Kubota
,
H.
Kato
, and
H.
Yamaguchi
, “
A new modelling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section
,”
J. Fluid Mech.
240
(
1
),
59
96
(
1992
).
16.
A. K.
Singhal
,
M. M.
Athavale
,
H.
Li
, and
Y.
Jiang
, “
Mathematical basis and validation of the full cavitation model
,”
J. Fluids Eng.
124
(
3
),
617
624
(
2002
).
17.
J.
Sauer
and
G. H.
Schnerr
, “
Unsteady cavitating flow—A new cavitation model based on a modified front capturing method and bubble dynamics
,” in
Proceedings of 2000 ASME Fluid Engineering Summer Conference
,
Boston, MA
,
11–15 June 2000
(
ASME
,
2000
), Vol.
251
, pp.
1073
1079
.
18.
P. J.
Zwart
,
A. G.
Gerber
, and
T.
Belamri
A two-phase flow model for predicting cavitation dynamics
,” in
Fifth International Conference on Multiphase Flow
,
Yokohama, Japan
,
30 May–3 June 2004
(
2004
), p.
152
.
19.
L.
Li
,
Z.
Wang
,
X.
Li
, and
J.
Zhu
, “
Multiscale modeling of tip-leakage cavitating flows by a combined volume of fluid and discrete bubble model
,”
Phys. Fluids
33
,
062104
(
2021
).
20.
T.
Du
,
Y.
Wang
,
L.
Liao
, and
C.
Huang
, “
A numerical model for the evolution of internal structure of cavitation cloud
,”
Phys. Fluids
28
(
7
),
077103
(
2016
).
21.
J.
Ma
,
C. T.
Hsiao
, and
G. L.
Chahine
, “
A physics based multiscale modeling of cavitating flows
,”
Comput. Fluids
145
,
68
84
(
2017
).
22.
C. T.
Hsiao
,
J.
Ma
, and
G. L.
Chahine
, “
Multiscale tow-phase flow modeling of sheet and cloud cavitation
,”
Int. J. Multiphase Flow
90
,
102
117
(
2017
).
23.
J.
Ma
,
C. T.
Hsiao
, and
G. L.
Chahine
, “
Shared-memory parallelization for two-way coupled Euler–Lagrange modeling of cavitating bubbly flows
,”
J. Fluids Eng.
137
(
12
),
121106
(
2015
).
24.
A. K.
Lidtke
,
S. R.
Turnock
, and
V. F.
Humphrey
, “
Multi-scale modelling of cavitation-induced pressure around the delft twist 11 hydrofoil
,” in
Proceeding of the 31st Symposium on Naval Hydrodynamics
,
Monterey, CA
,
11–16 September 2016
(
2016
).
25.
H. M.
Hulburt
and
S.
Katz
, “
Some problems in particle technology
,”
Chem. Eng. Sci.
19
(
8
),
555
574
(
1964
).
26.
F.
Sewerin
and
S.
Rigopoulos
, “
An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows
,”
Phys. Fluids
29
(
10
),
105105
(
2017
).
27.
M.
Shiea
,
A.
Buffo
,
M.
Vanni
, and
D.
Marchisio
, “
Numerical methods for the solution of population balance equations coupled with computational fluid dynamics
,”
Annu. Rev. Chem. Biomol. Eng.
11
,
339
366
(
2020
).
28.
A.
Seltz
,
P.
Domingo
, and
L.
Vervisch
, “
Solving the population balance equation for non-inertial particles dynamics using probability density function and neural networks: Application to a sooting flame
,”
Phys. Fluids
33
(
1
),
013311
(
2021
).
29.
H.
Yan
,
H.
Gong
,
Z.
Huang
,
P.
Zhou
, and
L.
Liu
, “
Euler–Euler modeling of reactive bubbly flow in a bubble column
,”
Phys. Fluids
34
(
5
),
053306
(
2022
).
30.
T. K.
Gaurav
,
A.
Prakash
, and
C.
Zhang
, “
CFD modeling of the hydrodynamic characteristics of a bubble column in different flow regimes
,”
Int. J. Multiphase Flow
147
,
103902
(
2022
).
31.
A.
Wodołażski
, “
Co-simulation of CFD-multiphase population balance coupled model aeration of sludge flocs in stirrer tank bioreactor
,”
Int. J. Multiphase Flow
123
,
103162
(
2020
).
32.
J.
Li
,
A. M.
Castro
, and
P. M.
Carrica
, “
A pressure–velocity coupling approach for high void fraction free surface bubbly flows in overset curvilinear grids
,”
Int. J. Numer. Methods Fluids
79
(
7
),
343
369
(
2015
).
33.
J.
Li
and
P. M.
Carrica
, “
A population balance cavitation model
,”
Int. J. Multiphase Flow
138
,
103617
(
2021
).
34.
R.
McGraw
, “
Description of aerosol dynamics by the quadrature method of moments
,”
Aerosol. Sci. Technol.
27
(
2
),
255
265
(
1997
).
35.
S.
Kumar
and
D.
Ramkrishna
, “
On the solution of population balance equations by discretization—I. A fixed pivot technique
,”
Chem. Eng. Sci.
51
(
8
),
1311
1332
(
1996
).
36.
S.
Kumar
and
D.
Ramkrishna
, “
On the solution of population balance equations by discretization—II. A moving pivot technique
,”
Chem. Eng. Sci.
51
(
8
),
1333
1342
(
1996
).
37.
J.
Kumar
,
M.
Peglow
,
G.
Warnecke
,
S.
Heinrich
, and
L.
Mörl
, “
Improved accuracy and convergence of discretized population balance for aggregation: The cell average technique
,”
Chem. Eng. Sci.
61
(
10
),
3327
3342
(
2006
).
38.
S.
Rigopoulos
and
A. G.
Jones
, “
Finite‐element scheme for solution of the dynamic population balance equation
,”
AIChE J.
49
(
5
),
1127
1139
(
2003
).
39.
C. E.
Brennen
,
Fundamentals of Multiphase Flow
(
Cambridge University Press
,
2009
).
40.
X.
Cheng
,
X.
Shao
, and
L.
Zhang
, “
The characteristics of unsteady cavitation around a sphere
,”
Phys. Fluids
31
(
4
),
042103
(
2019
).
41.
O.
Coutier-Delgosha
,
R.
Fortes-Patella
, and
J. L.
Reboud
, “
Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation
,”
J. Fluids Eng.
125
(
1
),
38
45
(
2003
).
42.
D.
Ramkrishna
,
Population Balances: Theory and Applications to Particulate Systems in Engineering
(
Elsevier
,
2000
).
43.
C.
Yang
,
J.
Zhang
, and
Z.
Huang
, “
Numerical study on cavitation-vortex-noise correlation mechanism and dynamic mode decomposition of a hydrofoil
,”
Phys. Fluids
34
(
12
),
125105
(
2022
).
44.
M. J.
Prince
and
H. W.
Blanch
, “
Bubble coalescence and break‐up in air‐sparged bubble columns
,”
AIChE J.
36
(
10
),
1485
1499
(
1990
).
45.
T.
Wang
,
J.
Wang
, and
Y.
Jin
, “
Theoretical prediction of flow regime transition in bubble columns by the population balance model
,”
Chem. Eng. Sci.
60
(
22
),
6199
6209
(
2005
).
46.
Y.
Liao
and
D.
Lucas
, “
A literature review on mechanisms and models for the coalescence process of fluid particles
,”
Chem. Eng. Sci.
65
(
10
),
2851
2864
(
2010
).
47.
R. D.
Kirkpatrick
and
M. J.
Lockett
, “
The influence of approach velocity on bubble coalescence
,”
Chem. Eng. Sci.
29
(
12
),
2363
2373
(
1974
).
48.
R. M.
Thomas
, “
Bubble coalescence in turbulent flows
,”
Int. J. Multiphase Flow
7
(
6
),
709
717
(
1981
).
49.
F.
Lehr
and
D.
Mewes
, “
A transport equation for the interfacial area density applied to bubble columns
,”
Chem. Eng. Sci.
56
(
3
),
1159
1166
(
2001
).
50.
Y.
Liao
and
D.
Lucas
, “
A literature review of theoretical models for drop and bubble break up in turbulent dispersions
,”
Chem. Eng. Sci.
64
(
15
),
3389
3406
(
2009
).
51.
L.
Zhang
,
L.
Chen
, and
X.
Shao
, “
The migration and growth of nuclei in an ideal vortex flow
,”
Phys. Fluids
28
(
12
),
123305
(
2016
).
52.
H.
Zhang
,
Y.
Liu
,
B.
Wang
, and
X.
Cheng
, “
Phase-resolved characteristics of bubbles in cloud cavitation shedding cycles
,”
Ocean Eng.
256
,
111529
(
2022
).
53.
C.
Wan
,
Study on Flow Field inside Cavitation Region and Unsteady Characteristics of Cavitating Flow around an Axisymmetric Body
(
Shanghai Jiao Tong University
,
2017
) (in Chinese).
54.
C.
Martinez
,
Splitting and Dispersion of Bubbles by Turbulence
(
University of California
,
San Diego
,
1998
).
55.
M.
An
,
X.
Guan
, and
N.
Yang
, “
Modeling the effects of solid particles in CFD-PBM simulation of slurry bubble columns
,”
Chem. Eng. Sci.
223
,
115743
(
2020
).
56.
X. B.
Zhang
and
Z. H.
Luo
, “
Effects of bubble coalescence and break up models on the simulation of bubble columns
,”
Chem. Eng. Sci.
226
,
115850
(
2020
).
You do not currently have access to this content.