Grid fins are unconventional control surfaces configured by a grid of cells within an outer frame; this grid acts as multiple lifting surfaces, and the pattern of the cells strongly affects the grid fin's performance. In this study, three-dimensional simulations were performed using a computational fluid dynamic approach with a kω shear stress transport turbulence model to investigate the effect of grid patterns on fin aerodynamic characteristics. Three fin models were designed, including square, tri, and hexa grid patterns, to be more independently comparative; other parameters consisting of the outer frame's dimensions, internal web's thickness, chord length, dragging area, and grid cell area were kept similar between the models. The Mach numbers 0.7, 1.2, and 2.5 corresponding to subsonic, transonic, and supersonic regimes were investigated for varying angles of attack from −5° to 15° for each fin model. The aerodynamic efficiency of grid fins is appreciably improved by increasing the normal force coefficient (CN) while reducing the area force coefficient (CA) and hinge moment coefficient (CHM). The results underscore the hexa grid pattern's superiority, with CN increasing by 2.2% and CA decreasing by 1.92% compared to the square model (the original model) at Mach number 0.7. Especially, the hexa model exhibited a substantial decrease in CHM, with the largest difference being 56.8% compared to the square model at Mach 2.5.

1.
W.
Washington
and
M.
Miller
, “
Grid fins—A new concept for missile stability and control
,” AIAA Paper No. 93-0035,
1993
.
2.
T. W.
Ledlow
,
J. E.
Burkhalter
, and
R. J.
Hartfield
, “
Integration of grid fins for the optimal design of missile systems
,” AIAA Paper No. 2015-1017,
2015
.
3.
E.
Schülein
and
D.
Guyot
, “
Novel high-performance grid fins for missile control at high speeds: Preliminary numerical and experimental investigations
” Report No. RTO-MP-AVT-135 (
NATO
,
2006
).
4.
E. Y.
Fournier
and
T. I. B.
Committee
, “
Wind tunnel investigation of a high L/D projectile with grid fin and conventional planar control surfaces
,” in
19th International Symposium on Ballistics
(DEStech Publications,
2001
), Vol.
1
, pp.
511
520
.
5.
S.
Munawar
, “
Analysis of grid fins as efficient control surface in comparison to conventional planar fins
,” in
27th Congress of the International Council of the Aeronautical Sciences (ICAS)
(ICAS,
2010
), pp.
1732
1737
.
6.
W. M.
Washington
,
P.
Booth
, and
M.
Miller
, “
Curvature and leading edge sweep back effects on grid fin aerodynamic characteristics
,” AIAA Paper No. 93-3480,
1993
.
7.
M. S.
Miller
and
W. D.
Washington
, “
An experimental investigation of grid fin drag reduction techniques
,” AIAA Paper No. 1994-1914,
1994
.
8.
J. E.
Burkhalter
and
H. M.
Frank
, “
Grid fin aerodynamics for missile applications in subsonic flow
,”
J. Spacecr. Rockets
33
(
1
),
38
44
(
1996
).
9.
J. E.
Burkhalter
and
H. M.
Frank
, “
Non-linear aerodynamic analysis of grid fin configurations
,” AIAA Paper No. 1995-1894,
1995
.
10.
J. E.
Burkhalter
, “
Grid fins for missile applications in supersonic flow
,” AIAA Paper No. 1996-194,
1996
.
11.
P.
Theerthamalai
and
M.
Nagarathinam
, “
Aerodynamic analysis of grid-fin configurations at supersonic speeds
,”
J. Spacecr. Rockets
43
(
4
),
750
756
(
2006
).
12.
P.
Theerthamalai
, “
Aerodynamic characterization of grid fins at subsonic speeds
,”
J. Aircr.
44
,
694
698
(
2007
).
13.
P.
Reynier
and
E.
Schülein
, “
Incorporation of an actuator disc for lattice wing modeling in an unstructured Navier–Stokes solver
,” in
New Results in Numerical and Experimental Fluid Mechanics IV
, Notes on Numerical Fluid Mechanics and Multidisciplinary Design Vol.
87
, edited by
C.
Breitsamter
et al (
Springer
,
Berlin
,
2004
), pp.
132
139
.
14.
P.
Reynier
,
U.
Reisch
,
J.
Longo
, and
R.
Radespiel
, “
Numerical study of hypersonic missiles with lattice wings using an actuator disk
,” in
20th AIAA Applied Aerodynamics Conference
(
AIAA
,
2002
).
15.
P.
Reynier
,
U.
Reisch
,
J.
Longo
, and
R.
Radespiel
, “
Flow prediction around a missile with lattice wings using the actuator disc concept
,”
Aerosp. Sci. Technol.
8
,
377
388
(
2004
).
16.
P.
Reynier
,
J. M.
Longo
, and
E.
Schülein
, “
Simulation of missiles with grid fins using an actuator disk
,”
J. Spacecr. Rockets
43
(
1
),
84
91
(
2006
).
17.
J. H.
Horlock
,
Actuator Disk Theory
(
McGraw-Hill
,
New York
,
1978
).
18.
S.
Chen
,
M.
Khalid
,
H.
Xu
, and
F.
Lesage
, “
A comprehensive CFD investigation of grid fins as efficient control surface devices
,” AIAA Paper No. 2000-987,
2000
.
19.
S. S.
Dol
, “
Aerodynamics analysis of grid fins inner lattice structure in cruise missile
,”
WSEAS Trans. Fluid Mech.
16
,
92
91
(
2021
).
20.
J.
Cai
, “
Numerical study on choked flow over grid-fin configurations
,”
J. Spacecr. Rockets
46
,
949
956
(
2009
).
21.
Y.
Zeng
,
J.
Cai
,
M.
Debiasi
, and
T. L.
Chng
, “
Numerical study on drag reduction for grid-fin configurations
,” AIAA Paper 2009–1105,
2009
.
22.
E.
Dikbas
,
Ö. U.
Baran
, and
C.
Sert
, “
Simplified numerical approach for the prediction of aerodynamic forces on grid fins
,”
J. Spacecr. Rockets
55
,
887
898
(
2018
).
23.
K.
Peng
,
F.
Hu
,
D.
Wang
,
P. N.
Okolo
,
M.
Xiang
,
G. J.
Bennett
, and
W.
Zhang
, “
Grid fins shape design of a launch vehicle based on sequential approximation optimization
,”
Adv. Space Res.
62
,
1863
1878
(
2018
).
24.
E.
Schülein
and
D.
Guyot
, “
Wave drag reduction approach for lattice wings at high speeds
,” in
New Results in Numerical and Experimental Fluid Mechanics VI
, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (
Springer
,
Berlin, Heidelberg
,
2007
), pp.
332
339
.
25.
M.
Debiasi
, “
Measurements of the forces and moments generated by swept-back grid fins
,” AIAA Paper 2012–2909,
2012
.
26.
M.
Debiasi
, “
Forces and moments generated by swept-forward grid fins and planar fins
,”
J. Aircr.
57
,
167
172
(
2020
).
27.
M.
Debiasi
and
Y.
Zeng
, “
Forces and moments generated by swept-back grid fins with sharp leading edges
,”
J. Aircr.
53
(
6
),
1964
1968
(
2016
).
28.
M.
Tripathi
,
A.
Misra
, and
M. M.
Sucheendran
, “
Effect of rectangular and airfoil planar member cross-section on cascade fin aerodynamics
,” AIAA Paper No. 2018-1761,
2018
.
29.
M.
Tripathi
,
M. M.
Sucheendran
, and
A.
Misra
, “
Flow field characterization and visualization of grid fin subsonic flow
,”
ASME J. Fluids Eng.
141
,
101401
(
2019
).
30.
M.
Tripathi
,
M. M.
Sucheendran
, and
A.
Misra
, “
Effect of aspect ratio variation on subsonic aerodynamics of cascade type grid fin at different gap-to-chord ratios
,”
Aeronaut. J.
124
,
472
498
(
2020
).
31.
M.
Tripathi
,
M. M.
Sucheendran
, and
A.
Misra
, “
Experimental analysis of cell pattern on grid fin aerodynamics in subsonic flow
,”
Proc. Inst. Mech. Eng. Part G
234
,
537
562
(
2020
).
32.
M.
Tripathi
,
M. M.
Sucheendran
, and
A.
Misra
, “
Effect of chord variation on subsonic aerodynamics of grid fins
,” in
Design and Development of Aerospace Vehicles and Propulsion Systems
, Lecture Notes in Mechanical Engineering (
Springer
,
Singapore
,
2021
), pp.
105
128
.
33.
M.
Tripathi
,
M. S.
Mahesh
, and
A.
Misra
, “
High angle of attack analysis of cascade fin in subsonic flow
,” in
Proceedings of the International Conference on Modern Research in Aerospace Engineering
, Lecture Notes in Mechanical Engineering (
Springer
,
Singapore
,
2018
), pp.
121
131
.
34.
F.
Hiroshima
and
K.
Tatsumi
, “
Grid pattern effects on aerodynamic characteristics of grid fins
,” in
24th Congress of International Council of the Aeronautical Sciences, Yokohama, Japan, 29 August–3 September
(ICAS,
2004
), Paper ICAS 2004-2.11.R.
35.
ANSYS Fluent-19.1
,
ANSYS Fluent Theory Guide
(
ANSYS, Inc.
,
2019
).
36.
H. M.
Phan
,
P. H.
Duan
, and
C. T.
Dinh
, “
Numerical aero-thermal study of high-pressure turbine nozzle guide vane: Effects of inflow conditions
,”
Phys. Fluids
32
,
034111
(
2020
).
37.
X.
Yang
,
Y.
Yang
,
Z.
Tian
et al, “
Spatiotemporal flow evolution in a rocket-based combined-cycle inlet during ejector-to-ramjet mode transition
,”
Phys. Fluids
35
(
10
),
107105
(
2023
).
38.
N.
Sharma
and
R.
Kumar
, “
Missile grid fins analysis using computational fluid dynamics: A systematic review
,”
INCAS Bull.
11
,
151
169
(
2019
).
39.
M. C.
Hughson
,
E. L.
Blades
,
E. A.
Luke
, and
G. L.
Abate
, “
Analysis of lattice grid tailfin missiles in high-speed flow
,” AIAA Paper No. 2007-3932,
2007
.
40.
J.
DeSpirito
,
H. L.
Edge
,
P.
Weinacht
,
J.
Sahu
, and
S. P. G.
Dinavahi
, “
Computational fluid dynamics analysis of a missile with grid fins
,”
J. Spacecr. Rockets
38
,
711
718
(
2001
).
41.
J.
DeSpirito
,
M. E.
Vaughn
, and
W. D.
Washington
, “
Numerical investigation of canard-controlled missile with planar and grid fins
,”
J. Spacecr. Rockets
40
,
363
370
(
2003
).
You do not currently have access to this content.