This paper is concerned with the analysis of the mixed convective magnetohydrodynamic (MHD) flow of a reactive couple stress multi-walled carbon nanotube Ag / C 2 H 6 O 2 hybrid nanofluid in a porous vertical channel subjected to quadratic thermal radiation along with a uniform inclined magnetic field applied to the channel walls. The flow is driven by the pressure gradient force and the buoyancy force, which is modeled based on the nonlinear Boussinesq approximation. The temperature-dependent reaction rate of the reactant molecule is derived using the Arrhenius law. The momentum and energy equations that govern the system are modeled in consideration of slip and convective conditions. The governing equations are non-dimensionalized by applying relevant dimensionless parameters and are solved using the homotopy analysis method (HAM). To analyze the irreversibilities in the system, the entropy generation number and the Bejan number are defined. Different important physical parameters developing in the system are considered for analysis, and their effects are scrutinized on the velocity and temperature profiles along with entropy generation. The emphasis is given to the concentration of nanoparticles along with the parameters arising due to the reactions of the fluid, buoyancy force, inclined magnetic field, thermal radiation, and porous material. The analysis reveals that the velocity and temperature of the fluid lowers with a higher concentration of nanoparticles, radiation parameter, and Hartmann number, whereas develops for the higher slip parameters and inclination of the magnetic field. The entropy generation rate increases with rising slip parameters and depletes for higher nanoparticle concentration, radiation parameter, Hartmann number, and inclination angle. The irreversibility in the system remains dominant due to heat transfer with higher Frank-Kameneskii and activation energy parameters, Hartmann number, and angle of inclination.

1.
A.
Bejan
, “
Second law analysis in heat transfer
,”
Energy
5
,
720
732
(
1980
).
2.
A.
Bejan
and
J.
Kestin
, “
Entropy generation through heat and fluid flow
,”
J. Appl. Mech.
50
(
2
),
475
(
1983
).
3.
S.
Baag
,
S.
Mishra
,
G.
Dash
, and
M.
Acharya
, “
Entropy generation analysis for viscoelastic mhd flow over a stretching sheet embedded in a porous medium
,”
Ain Shams Eng. J.
8
,
623
632
(
2017
).
4.
S.
Sreenadh
,
V. R.
Babu
,
G. G.
Krishna
,
S.
Mishra
, and
A.
Srinivas
, “
Entropy generation on mhd flow and heat transfer of non-newtonian fluid flow over a non-linear radially stretching sheet
,”
Int. J. Eng. Technol.
7
,
863
868
(
2018
).
5.
V. K.
Stokes
and
V. K.
Stokes
, “
Couple stresses in fluids
,” in
Theories of Fluids with Microstructure: An Introduction
(
Springer
,
Berlin, Heidelberg
,
1984
), pp.
34
80
.
6.
S.
Jangili
,
S. O.
Adesanya
,
H. A.
Ogunseye
, and
R.
Lebelo
, “
Couple stress fluid flow with variable properties: A second law analysis
,”
Math. Methods Appl. Sci.
42
,
85
98
(
2019
).
7.
O. D.
Makinde
and
A. S.
Eegunjobi
, “
Mhd couple stress nanofluid flow in a permeable wall channel with entropy generation and nonlinear radiative heat
,”
J. Therm. Sci. Technol.
12
,
JTST0033
JTST0033
(
2017
).
8.
S.
Kareem
,
S.
Adesanya
, and
U. E.
Vincent
, “
Second law analysis for hydromagnetic couple stress fluid flow through a porous channel
,”
Alexandria Eng. J.
55
,
925
931
(
2016
).
9.
H. N.
Zaidi
,
M.
Yousif
, and
S.
Nazia Nasreen
, “
Effects of thermal radiation, heat generation, and induced magnetic field on hydromagnetic free convection flow of couple stress fluid in an isoflux-isothermal vertical channel
,”
J. Appl. Math.
2020
,
1
12
.
10.
A. R.
Hassan
,
A. B.
Disu
, and
O. J.
Fenuga
, “
Entropy generation effect of a buoyancy force on hydromagnetic heat generating couple stress fluid through a porous medium with isothermal boundaries
,”
Heliyon
6
,
e04156
(
2020
).
11.
S. U.
Choi
and
J. A.
Eastman
, “
Enhancing thermal conductivity of fluids with nanoparticles
,” Technical Report No. ANL/MSD/CP-84938; CONF-951135-29,
1995
.
12.
M.
Sheikhpour
,
M.
Arabi
,
A.
Kasaeian
,
A.
Rokn Rabei
, and
Z.
Taherian
, “
Role of nanofluids in drug delivery and biomedical technology: Methods and applications
,”
Nanotechnol. Sci. Appl.
13
,
47
(
2020
).
13.
K. V.
Wong
and
O.
De Leon
, “
Applications of nanofluids: Current and future
,”
Adv. Mech. Eng.
2
,
519659
(
2010
).
14.
M. A.
Sheremet
, “
Applications of nanofluids
,” Nanomaterials
11
, 1716 (
2021
).
15.
A.
Dosodia
,
S.
Vadapalli
,
A. K.
Jain
,
B.
Sanduru
, and
S. B.
Mukkamala
, “
Effect of size of multiwalled carbon nanotubes on thermal conductivity and viscosity of ethylene glycol-based nanofluids for solar thermal applications
,”
Phys. Fluids
35
,
092005
(
2023
).
16.
T.
Armaghani
,
A.
Rashad
,
O.
Vahidifar
,
S.
Mishra
, and
A.
Chamkha
, “
Effects of discrete heat source location on heat transfer and entropy generation of nanofluid in an open inclined l-shaped cavity
,”
Int. J. Numer. Methods Heat Fluid Flow
29
,
1363
1377
(
2019
).
17.
T.
Thumma
,
S.
Mishra
, and
O. A.
Bég
, “
ADM solution for Cu/CuO–water viscoplastic nanofluid transient slip flow from a porous stretching sheet with entropy generation, convective wall temperature and radiative effects
,”
J. Appl. Comput. Mech.
7
,
1291
1305
(
2021
).
18.
A.
Lopez
,
G.
Ibanez
,
J.
Pantoja
,
J.
Moreira
, and
O.
Lastres
, “
Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions
,”
Int. J. Heat Mass Transfer
107
,
982
994
(
2017
).
19.
B.
Gireesha
,
P.
Venkatesh
, and
F.
Almeida
, “
Entropy scrutiny of couple stress nanoliquid flow with slip and convective conditions in an upright microchannel
,”
Phys. Scr.
96
,
045302
(
2021
).
20.
S.
Ontela
and
L.
Tlau
, “
Micropolar nanofluid flow in a vertical porous channel: Entropy generation analysis
,”
J. Appl. Nonlinear Dyn.
10
,
305
314
(
2021
).
21.
J.
Sarkar
,
P.
Ghosh
, and
A.
Adil
, “
A review on hybrid nanofluids: Recent research, development and applications
,”
Renewable Sustainable Energy Rev.
43
,
164
177
(
2015
).
22.
F.
Jamil
and
H. M.
Ali
, “
Applications of hybrid nanofluids in different fields
,” in
Hybrid Nanofluids for Convection Heat Transfer
(
Elsevier
,
2020
), pp.
215
254
.
23.
S.
Das
,
R. N.
Jana
, and
O. D.
Makinde
, “
MHD flow of Cu-Al2O3/water hybrid nanofluid in porous channel: Analysis of entropy generation
,”
Defect Diffusion Forum
377
,
42
61
(
2017
).
24.
G.
Huminic
and
A.
Huminic
, “
Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: A review
,”
J. Mol. Liq.
302
,
112533
(
2020
).
25.
S.
Sindhu
and
B.
Gireesha
, “
Entropy generation analysis of hybrid nanofluid in a microchannel with slip flow, convective boundary and nonlinear heat flux
,”
Int. J. Numer. Methods Heat Fluid Flow
31
,
53
74
(
2021
).
26.
E. M.
Elsaid
and
M. S.
Abdel-wahed
, “
Mixed convection hybrid-nanofluid in a vertical channel under the effect of thermal radiative flux
,”
Case Stud. Therm. Eng.
25
,
100913
(
2021
).
27.
E. M.
Elsaid
and
M. S.
Abdel-wahed
, “
MHD mixed convection ferro Fe3o4/Cu-hybrid-nanofluid runs in a vertical channel
,”
Chin. J. Phys.
76
,
269
282
(
2022
).
28.
Y.
Akbar
,
U.
Akram
,
M.
Aun
,
H.
Afsar
, and
M.
Javed
, “
MHD peristaltic transportation of radiative MWCNT-Ag/C2H6O2 hybrid nanofluid with variable characteristics
,”
Mater. Today Commun.
28
,
102681
(
2021
).
29.
L.
Tlau
and
S.
Ontela
, “
Entropy analysis of hybrid nanofluid flow in a porous medium with variable permeability considering isothermal/isoflux conditions
,”
Chin. J. Phys.
80
,
239
252
(
2022
).
30.
P.
Ummeda
and
S.
Ontela
, “
Mixed convective thermally radiative viscoelastic hybrid nanofluid flow in a vertical channel: Entropy generation analysis
,”
Mod. Phys. Lett. B
34
,
2350264
(
2023
).
31.
S.
Riasat
,
M.
Ramzan
,
Y.-L.
Sun
,
M.
Malik
, and
R.
Chinram
, “
Comparative analysis of Yamada-Ota and Xue models for hybrid nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics
,”
Case Stud. Therm. Eng.
26
,
101039
(
2021
).
32.
N.
Abbas
,
M.
Malik
,
S.
Nadeem
, and
I. M.
Alarifi
, “
On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle
,”
Eur. Phys. J. Plus
135
,
145
(
2020
).
33.
N.
Abbas
,
S.
Nadeem
, and
M.
Malik
, “
On extended version of yamada–ota and xue models in micropolar fluid flow under the region of stagnation point
,”
Phys. A
542
,
123512
(
2020
).
34.
H.
Gul
,
M.
Ramzan
,
K. S.
Nisar
,
R. N.
Mohamed
, and
H. A. S.
Ghazwani
, “
Performance-based comparison of Yamada-Ota and Hamilton–crosser hybrid nanofluid flow models with magnetic dipole impact past a stretched surface
,”
Sci. Rep.
12
,
29
(
2022
).
35.
P.
Ratha
,
R.
Tripathy
, and
S.
Mishra
, “
Particle-shape illustration via the Hamilton–crosser and Yamada-Ota hybrid nanofluid flow models past a stretching cylinder
,”
Eur. Phys. J. Plus
138
,
1
15
(
2023
).
36.
R.
Mohapatra
,
B.
Mahanthesh
,
B.
Gireesha
, and
S.
Mishra
, “
Exploration of chemical reaction effects on entropy generation in heat and mass transfer of magneto-jeffery liquid
,”
Int. J. Chem. Reactor Eng.
16
,
20180005
(
2018
).
37.
S. O.
Adesanya
,
S. O.
Kareem
,
J. A.
Falade
, and
S. A.
Arekete
, “
Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material
,”
Energy
93
,
1239
1245
(
2015
).
38.
S. O.
Adesanya
,
H.
Ogunseye
,
R.
Lebelo
,
K.
Moloi
, and
O.
Adeyemi
, “
Second law analysis for nonlinear convective flow of a reactive couple stress fluid through a vertical channel
,”
Heliyon
4
,
e00907
(
2018
).
39.
A. R.
Hassan
and
O. J.
Fenuga
, “
The effects of thermal radiation on the flow of a reactive hydromagnetic heat generating couple stress fluid through a porous channel
,”
SN Appl. Sci.
1
,
1278
(
2019
).
40.
A. R.
Hassan
, “
The entropy generation analysis of a reactive hydromagnetic couple stress fluid flow through a saturated porous channel
,”
Appl. Math. Comput.
369
,
124843
(
2020
).
41.
A.
Adeosun
,
J.
Gbadeyan
, and
E.
Titiloye
, “
Heat and mass transfer of a nonlinear convective Arrhenius reactive fluid flow between two vertical plates filled with a porous material
,”
Eur. Phys. J. Plus
135
,
882
(
2020
).
42.
S.
Panda
,
S.
Ontela
,
S.
Mishra
, and
T.
Thumma
, “
Effect of Arrhenius activation energy on two-phase nanofluid flow and heat transport inside a circular segment with convective boundary conditions: Optimization and sensitivity analysis
,”
Int. J. Mod. Phys. B
(published online).
43.
K.
Vajravelu
and
K.
Sastri
, “
Fully developed laminar free convection flow between two parallel vertical walls—I
,”
Int. J. Heat Mass Transfer
20
,
655
660
(
1977
).
44.
K.
Thriveni
and
B.
Mahanthesh
, “
Optimization and sensitivity analysis of heat transport of hybrid nanoliquid in an annulus with quadratic Boussinesq approximation and quadratic thermal radiation
,”
Eur. Phys. J. Plus
135
,
459
(
2020
).
45.
P.
Rana
,
W.
Al-Kouz
,
B.
Mahanthesh
, and
J.
Mackolil
, “
Heat transfer of TiO2-EG nanoliquid with active and passive control of nanoparticles subject to nonlinear Boussinesq approximation
,”
Int. Commun. Heat Mass Transfer
126
,
105443
(
2021
).
46.
M.
Basavarajappa
,
S.
Myson
, and
K.
Vajravelu
, “
Study of multilayer flow of a bi-viscous bingham fluid sandwiched between hybrid nanofluid in a vertical slab with nonlinear Boussinesq approximation
,”
Phys. Fluids
34
,
122006
(
2022
).
47.
B.
Mahanthesh
, “
Quadratic radiation and quadratic Boussinesq approximation on hybrid nanoliquid flow
,” in
Mathematical Fluid Mechanics: Advances in Convective Instabilities and Incompressible Fluid Flow,
edited by B. Mahanthesh (
De Gruyter
,
Boston
,
2021
), pp.
13
54
.
48.
K.
Thriveni
and
B.
Mahanthesh
, “
Sensitivity analysis of nonlinear radiated heat transport of hybrid nanoliquid in an annulus subjected to the nonlinear Boussinesq approximation
,”
J. Therm. Anal. Calorim.
143
,
2729
2748
(
2021
).
49.
G.
Mandal
and
D.
Pal
, “
Estimation of entropy generation and heat transfer of magnetohydrodynamic quadratic radiative Darcy–Forchheimer cross hybrid nanofluid (GO+ Ag/kerosene oil) over a stretching sheet
,”
Numer. Heat Transfer, Part A
84
,
853
(
2023
).
50.
S.
Liao
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
(
Chapman and Hall/CRC
,
2003
).
51.
S.
Liao
,
Homotopy Analysis Method in Nonlinear Differential Equations
(
Springer
,
2012
).
52.
A.
Mishra
and
B.
Sharma
, “
MHD mixed convection flow in a rotating channel in the presence of an inclined magnetic field with the Hall effect
,”
J. Eng. Phys. Thermophys.
90
,
1488
1499
(
2017
).
53.
L.
Tlau
, “
Fundamental flow problems considering non-Newtonian hyperbolic tangent fluid with Navier slip: Homotopy analysis method
,”
Appl. Comput. Mech.
14
,
179
188
(
2020
).
You do not currently have access to this content.