Spheres are the most studied water entry projectile due to their symmetry and simplicity, but in practical applications, it is rare that an impacting body is perfectly spherical. Perturbations to the classical impactor are thus critical for aligning fundamental investigation with more advanced engineering applications. This study investigates the water entry of hydrophilic and hydrophobic spheres with through-channels along the water entry axis and producing deep seal cavities. The channels allow water to pass through the sphere to create a jet tailing the sphere and hastening cavity pinch-off. Channeled spheres produce smaller cavities than their intact counterparts and suppress the onset of cavity formation. Spheres with channels show similar drag coefficients as solid, intact spheres.

1.
T. T.
Truscott
,
B. P.
Epps
, and
J.
Belden
, “
Water Entry of Projectiles
,”
Annu. Rev. Fluid Mech.
46
,
355
378
(
2014
).
2.
D.
Gilbarg
and
R. A.
Anderson
, “
Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water
,”
J. Appl. Phys.
19
,
127
139
(
1948
).
3.
J. M.
Aristoff
and
J. W. M.
Bush
, “
Water entry of small hydrophobic spheres
,”
J. Fluid Mech.
619
,
45
78
(
2009
).
4.
J.
Eshraghi
,
S.
Jung
, and
P. P.
Vlachos
, “
To seal or not to seal: The closure dynamics of a splash curtain
,”
Phys. Rev. Fluids
5
,
104001
(
2020
).
5.
C.
Duez
,
C.
Ybert
,
C.
Clanet
, and
L.
Bocquet
, “
Wetting controls separation of inertial flows from solid surfaces
,”
Phys. Rev. Lett.
104
,
084503
(
2010
).
6.
C.
Duez
,
C.
Ybert
,
C.
Clanet
, and
L.
Bocquet
, “
Making a splash with water repellency
,”
Nat. Phys.
3
,
180
183
(
2007
).
7.
A.
May
and
J. C.
Woodhull
, “
The virtual mass of a sphere entering water vertically
,”
J. Appl. Phys.
21
,
1285
1289
(
2004
).
8.
J. M.
Aristoff
,
T. T.
Truscott
,
A. H.
Techet
, and
J. W. M.
Bush
, “
The water-entry cavity formed by low Bond number impacts
,”
Phys. Fluids
20
,
091111
(
2008
).
9.
J. M.
Aristoff
,
T. T.
Truscott
,
A. H.
Techet
, and
J. W. M.
Bush
, “
The water entry of decelerating spheres
,”
Phys. Fluids
22
,
032102
(
2010
).
10.
J.
Belden
,
N. B.
Speirs
,
A. M.
Hellum
,
M.
Jones
,
A. J.
Paolero
, and
T. T.
Truscott
, “
Water entry of cups and disks
,”
J. Fluid Mech.
963
,
A14
(
2023
).
11.
Y.
Hou
,
Z.
Huang
,
Z.
Chen
,
Z.
Guo
, and
Y.
Luo
, “
Investigations on the vertical water-entry of a hollow cylinder with deep-closure pattern
,”
Ocean Eng.
190
,
106426
(
2019
).
12.
R. C.
Hurd
,
J.
Belden
,
M. A.
Jandron
,
D.
Tate Fanning
,
A. F.
Bower
, and
T. T.
Truscott
, “
Water entry of deformable spheres
,”
J. Fluid Mech.
824
,
912
930
(
2017
).
13.
A. A.
Korobkin
and
V. V.
Pukhnachov
, “
Initial stage of water impact
,”
Annu. Rev. Fluid Mech.
20
,
159
185
(
1988
).
14.
N. B.
Speirs
,
J.
Belden
,
Z.
Pan
,
S.
Holekamp
,
G.
Badlissi
,
M.
Jones
, and
T. T.
Truscott
, “
The water entry of a sphere in a jet
,”
J. Fluid Mech.
863
,
956
968
(
2019
).
15.
H.
Liu
,
J.
Pi
,
B.
Zhou
,
L.
Chen
,
Q.
Fu
, and
G.
Zhang
, “
Experimental investigation on the multiphase flow characteristics of oblique water entry of semi-closed cylinder
,”
Ocean Eng.
239
,
109819
(
2021
).
16.
L.
Yang
,
Y.
Wei
,
J.
Li
,
C.
Wang
, and
W.
Xia
, “
Experimental study on splash behaviors and cavity shape of elastic spheres during water entry
,”
Appl. Ocean Res.
113
,
102754
(
2021
).
17.
T. T.
Truscott
and
A. H.
Techet
, “
Water entry of spinning spheres
,”
J. Fluid Mech.
625
,
135
165
(
2009
).
18.
T. T.
Truscott
and
A. H.
Techet
, “
Cavity formation in the wake of a spinning sphere impacting the free surface
,”
Phys. Fluids
18
,
091113
(
2006
).
19.
A.
Techet
and
T.
Truscott
, “
Water entry of spinning hydrophobic and hydrophilic spheres
,”
J. Fluids Struct.
27
,
716
726
(
2011
).
20.
A.
May
, “
Effect of surface condition of a sphere on its water-entry cavity
,”
J. Appl. Phys.
22
,
1219
1222
(
1951
).
21.
N. B.
Speirs
,
M. M.
Mansoor
,
J.
Belden
, and
T. T.
Truscott
, “
Water entry of spheres with various contact angles
,”
J. Fluid Mech.
862
,
R3
(
2019
).
22.
D. A.
Watson
,
C. J.
Souchik
,
M. P.
Weinberg
,
J. M.
Bom
, and
A. K.
Dickerson
, “
Making a splash with fabrics in hydrophilic sphere entry
,”
J. Fluids Struct.
94
,
102907
(
2020
).
23.
D. A.
Watson
,
J. L.
Stephen
, and
A. K.
Dickerson
, “
Jet amplification and cavity formation induced by penetrable fabrics in hydrophilic sphere entry
,”
Phys. Fluids
30
,
082109
(
2018
).
24.
D. A.
Watson
,
J. L.
Stephen
, and
A. K.
Dickerson
, “
Impacts of free-falling spheres on a deep liquid pool with altered fluid and impactor surface conditions
,”
JoVE
144
,
e59300
(
2019
).
25.
N. B.
Speirs
,
Z.
Pan
,
J.
Belden
, and
T. T.
Truscott
, “
The water entry of multi-droplet streams and jets
,”
J. Fluid Mech.
844
,
1084
(
2018
).
26.
M.
Lee
,
R. G.
Longoria
, and
D. E.
Wilson
, “
Cavity dynamics in high-speed water entry
,”
Phys. Fluids
9
,
540
550
(
1997
).
27.
T. T.
Truscott
, “
Cavity dynamics of water entry for spheres and ballistic projectiles
,”
thesis
,
Massachusetts Institute of Technology
,
2009
.
28.
J.-F.
Louf
,
B.
Chang
,
J.
Eshraghi
,
A.
Mituniewicz
,
P. P.
Vlachos
, and
S.
Jung
, “
Cavity ripple dynamics after pinch-off
,”
J. Fluid Mech.
850
,
611
623
(
2018
).
29.
T.
Grumstrup
,
J. B.
Keller
, and
A.
Belmonte
, “
Cavity ripples observed during the impact of solid objects into liquids
,”
Phys. Rev. Lett.
99
,
114502
114502
(
2007
).
30.
A.
Kiyama
,
M. M.
Mansoor
,
N. B.
Speirs
,
Y.
Tagawa
, and
T. T.
Truscott
, “
Gelatine cavity dynamics of high-speed sphere impact
,”
J. Fluid Mech.
880
,
707
722
(
2019
).
31.
M. M.
Mansoor
,
I. U.
Vakarelski
,
J. O.
Marston
,
T. T.
Truscott
, and
S. T.
Thoroddsen
, “
Stable–streamlined and helical cavities following the impact of Leidenfrost spheres
,”
J. Fluid Mech.
823
,
716
754
(
2017
).
32.
A.
May
and
J. C.
Woodhull
, “
Drag coefficients of steel spheres entering water vertically
,”
J. Appl. Phys.
19
,
1109
1121
(
2004
).
33.
D. A.
Watson
,
J. M.
Bom
,
M. P.
Weinberg
,
C. J.
Souchik
, and
A. K.
Dickerson
, “
Water entry dynamics of spheres with heterogeneous wetting properties
,”
Phys. Rev. Fluids
6
,
044003
(
2021
).
34.
E.
Dussan
, “
On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Part 2. Small drops or bubbles having contact angles of arbitrary size
,”
J. Fluid Mech.
151
,
1
(
1985
).
35.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
292
(
2013
).
36.
J. O.
Marston
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
Cavity formation by the impact of Leidenfrost spheres
,”
J. Fluid Mech.
699
,
465
488
(
2012
).
37.
J. O.
Marston
,
T. T.
Truscott
,
N. B.
Speirs
,
M. M.
Mansoor
, and
S. T.
Thoroddsen
, “
Crown sealing and buckling instability during water entry of spheres
,”
J. Fluid Mech.
794
,
506
529
(
2016
).
38.
N. B.
Speirs
,
M. M.
Mansoor
,
R. C.
Hurd
,
S. I.
Sharker
,
W. G.
Robinson
,
B. J.
Williams
, and
T. T.
Truscott
, “
Entry of a sphere into a water-surfactant mixture and the effect of a bubble layer
,”
Phys. Rev. Fluids
3
,
104004
(
2018
).
39.
A.
Mehri
and
P.
Akbarzadeh
, “
Water entry of grooved spheres: Effect of the number of grooves and impact velocity
,”
J. Fluids Struct.
100
,
103198
(
2021
).
40.
J. O.
Marston
and
S. T.
Thoroddsen
, “
Ejecta evolution during cone impact
,”
J. Fluid Mech.
752
,
410
438
(
2014
).
41.
O. R.
Enriquez
,
I. R.
Peters
,
S.
Gekle
,
L. E.
Schmidt
,
D.
Lohse
, and
D.
van der Meer
, “
Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water
,”
J. Fluid Mech.
701
,
40
58
(
2012
).
42.
O. R.
Enríquez
,
I. R.
Peters
,
S.
Gekle
,
L. E.
Schmidt
,
D.
van der Meer
, and
D.
Lohse
, “
Non-axisymmetric impact creates pineapple-shaped cavity
,”
Phys. Fluids
23
,
091106
(
2011
).
43.
M. M.
Mansoor
,
J. O.
Marston
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
Water entry without surface seal: Extended cavity formation
,”
J. Fluid Mech.
743
,
295
326
(
2014
).
44.
A.
Osta
and
K. A.
Sallam
, “
Effect of Nozzle Length/Diameter ratio on the breakup of liquid jets in crossflow
,” AIAA Paper No. 2008-1040,
2008
.
45.
B. P.
Epps
,
T. T.
Truscott
, and
A. H.
Techet
, “
Evaluating derivatives of experimental data using smoothing splines
,”
Proceedings of Mathematical Methods in Engineering International Symposium
(
MMEI
,
Lisbon Portugal
,
2010
), pp.
29
38
.
46.
K. G.
Bodily
,
S. J.
Carlson
, and
T. T.
Truscott
, “
The water entry of slender axisymmetric bodies
,”
Phys. Fluids
26
,
072108
(
2014
).
47.
B.
Akers
and
A.
Belmonte
, “
Impact dynamics of a solid sphere falling into a viscoelastic micellar fluid
,”
J. Non-Newtonian Fluid Mech.
135
,
97
108
(
2006
).
48.
J. M.
Cheny
and
K.
Walters
, “
Extravagant viscoelastic effects in the Worthington jet experiment
,”
J. Non-Newtonian Fluid Mech.
67
,
125
135
(
1996
).
49.
T. C.
de Goede
,
K. G.
de Bruin
, and
D.
Bonn
, “
High-velocity impact of solid objects on Non-Newtonian Fluids
,”
Sci. Rep.
9
,
1250
(
2019
).
50.
S.
Nigen
and
K.
Walters
, “
On the two-dimensional splashing experiment for Newtonian and slightly elastic liquids
,”
J. Non-Newtonian Fluid Mech.
97
,
233
250
(
2001
).
51.
H.
Tabuteau
,
D.
Sikorski
,
S. J.
de Vet
, and
J. R.
de Bruyn
, “
Impact of spherical projectiles into a viscoplastic fluid
,”
Phys. Rev. E
84
,
031403
(
2011
).
You do not currently have access to this content.