Kidney stones and Escherichia coli bacterial particles are mineral aggregates found inside the kidney and bladder that cause urinary tract infections and complications during urination. Therefore, it is essential to understand that how such stones create the obstruction in the urine flow and what are the possible solutions to remove them from the urinary system? In view of the complications in the urinary system due to bacteria and CaOx, the major objectives of this study are to investigate (a) how electro-osmosis modulates the urine flow and helps in the removal of CaOx particles and bacteria via urine flow and (b) how diameter and density of the particles will affect the motion of the particles via urine flow? An electrolyte solution with Newtonian model for the urine and a moving wavy channel with time and axial displacement for urinary track are considered. Basset–Boussinesq–Oseen equation is employed to analyze the motion of CaOx and bacteria. Poisson–Boltzmann equation is considered to examine the distribution of the electric potential in urine. Analytical solutions are derived under the suitable assumptions and suitable boundary conditions for the present biophysical model. The results showed that (a) backward motion of bacterial particles was observed via urine flow and (b) the large size of CaOx particle covers fewer trajectories with slower velocity through urine flow, which may be the reasons of obstructions/infections in the urine flow. It is further concluded that the axial electric field increases the trajectory and velocity of the CaOx particle and bacterial particles, which will help in proper functioning of the urine flow and in the removal of such particles.

1.
T.
Ishii
,
Y.
Naya
,
T.
Yamanishi
, and
T.
Igarashi
, “
Urine flow dynamics through the urethra in patients with bladder outlet obstruction
,”
J. Mech. Med. Biol.
14
(
04
),
1450052
(
2014
).
2.
C. G.
Fontanella
and
E. L.
Carniel
, “
Computational tools for the investigation of the male lower urinary tract functionality in health and disease
,”
J. Med. Biol. Eng.
41
,
203
215
(
2021
).
3.
M.
Oyaert
and
J.
Delanghe
, “
Progress in automated urinalysis
,”
Ann. Lab. Med.
39
(
1
),
15
22
(
2019
).
4.
H.
Mehboob
,
K.
Maqbool
,
A. M.
Siddiqui
, and
F.
Awan
, “
Mathematical analysis of viscosity and reabsorption on urine flow through a straight narrow tube
,”
Biomed. Eng.
33
(
5
),
2150039
(
2021
).
5.
H.
Winberg
,
M.
Anderberg
,
E.
Arnbjörnsson
, and
P.
Stenström
, “
Urinary flow measurement in hypospadias correlated to surgical procedure and risk of development of urethra-cutaneous fistula
,”
J. Pediatr. Urol.
16
(
3
),
306.E1
(
2020
).
6.
S.
Zheng
,
D.
Carugo
,
A.
Mosayyebi
,
B.
Turney
,
F.
Burkhard
,
D.
Lange
,
D.
Obrist
,
S.
Waters
, and
F.
Clavica
, “
Fluid mechanical modeling of the upper urinary tract
,”
WIREs Mech. Dis.
13
(
6
),
e1523
(
2021
).
7.
K.
Tullus
and
N.
Shaikh
, “
Urinary tract infections in children
,”
Lancet
395
(
10237
),
1659
1668
(
2020
).
8.
Y.
Li
,
Z.
Chen
,
R.
Zeng
,
J.
Huang
,
Y.
Zhuo
, and
Y.
Wang
, “
Bladder neck angle associated with lower urinary tract symptoms and urinary flow rate in patients with benign prostatic hyperplasia
,”
Urology
158
,
156
161
(
2021
).
9.
D.
Tripathi
, “
Study of transient peristaltic heat flow through a finite porous channel
,”
Math. Comput. Modell.
57
(
5–6
),
1270
1283
(
2013
).
10.
H.-H.
Kim
,
Y. H.
Choi
,
S. B.
Lee
,
Y.
Baba
,
K.-W.
Kim
, and
S.-H.
Suh
, “
Numerical analysis of the urine flow in a stented ureter with no peristalsis
,”
Bio-Med. Mater. Eng.
26
(
s1
),
S215
S223
(
2015
).
11.
P. S.
Lykoudis
and
R.
Roos
, “
The fluid mechanics of the ureter from a lubrication theory point of view
,”
J. Fluid Mech.
43
(
4
),
661
674
(
1970
).
12.
L. G.
Keni
,
M. J.
Hayoz
,
S. M. A.
Khader
,
P.
Hegde
,
K.
Prakashini
,
M.
Tamagawa
,
B. S.
Shenoy
,
B. Z.
Hameed
, and
M.
Zuber
, “
Computational flow analysis of a single peristaltic wave propagation in the ureter
,”
Comput. Methods Programs Biomed.
210
,
106378
(
2021
).
13.
L. G.
Keni
,
S.
Shenoy
,
P.
Hegde
,
K.
Prakashini
,
M.
Tamagawa
,
S. M. A.
Khader
,
B. Z.
Hameed
, and
M.
Zuber
, “
Investigating the effect of a single peristalsis wave on unobstructed ureter using a computational technique
,”
Eng. Sci.
20
,
330
340
(
2022
).
14.
T.
Burdyga
and
R. J.
Lang
, “
Excitation-contraction coupling in ureteric smooth muscle: Mechanisms driving ureteric peristalsis
,” in
Smooth Muscle Spontaneous Activity: Physiological Pathological Modulation
, edited by
H.
Hashitani
and
R. J.
Lang
(
Springer
,
2019
), pp. 
103
119
.
15.
M.
Yoshikawa
,
R.
Mitsui
,
H.
Takano
, and
H.
Hashitani
, “
Mechanosensitive modulation of peristaltic contractions in the mouse renal pelvis
,”
Eur. J. Pharmacol.
920
,
174834
(
2022
).
16.
H. J.
Anjum
and
A.
Ali
, “
Quantifying particle adhesion to the ureteral walls during peristaltic flow
,”
Phys. Rev. E
105
(
2
),
024406
(
2022
).
17.
M.
Godin
,
A. k
Bryan
, and
T. P.
Burg
, “
Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator
,”
Appl. Phys. Lett.
91
,
123121
(
2007
).
18.
F. L.
Coe
,
J. H.
Parks
, and
J. R.
Asplin
, “
The pathogenesis and treatment of kidney stones
,”
N. Engl. J. Med.
327
(
16
),
1141
1152
(
1992
).
19.
A.
Guerra
et al, “
Effects of urine dilution on quantity, size and aggregation of calcium oxalate crystals induced in vitro by an oxalate load
,”
Clin. Chem. Lab. Med.
43
(
6
),
585
589
(
2005
).
20.
R. C.
Walton
,
J. P.
Kavanagh
, and
B. R.
Heywood
, “
The density and protein content of calcium oxalate crystals precipitated from human urine: A tool to investigate ultrastructure and the fractional volume occupied by organic matrix
,”
J. Struct. Biol.
143
,
14
23
(
2003
).
21.
G.
Bihl
and
A.
Meyers
, “
Recurrent renal stone disease—Advances in pathogenesis and clinical management
,”
Lancet
358
(
9282
),
651
656
(
2001
).
22.
T.
Nagai
,
O.
Onodera
, and
S.
Okuda
, “
Deep learning classification of urinary sediment crystals with optimal parameter tuning
,”
Sci. Rep.
12
(
1
),
21178
(
2022
).
23.
J.
Jiménez-Lozano
,
M.
Sen
, and
P. F.
Dunn
, “
Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter
,”
Phys. Rev. E
79
(
4
),
041901
(
2009
).
24.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
(
4
),
883
889
(
1983
).
25.
D.
Tripathi
,
D. S.
Bhandari
, and
O.
Anwar Bég
, “
Thermal effects on SARS-CoV-2 transmission in peristaltic blood flow: Mathematical modeling
,”
Phys. Fluids
34
(
6
),
061904
(
2022
).
26.
T.-K.
Hung
and
T. D.
Brown
, “
Solid-particle motion in two-dimensional peristaltic flows
,”
J. Fluid Mech.
73
(
1
),
77
96
(
1976
).
27.
Z.
Yan
,
Z.
Li
,
S.
Cheng
,
X.
Wang
,
Z.
Lingling
,
L.
Zheng
, and
D. P.
Saroj
, “
Transport and deposition of solid phosphorus-based mineral particles in urine diversion systems
,”
Environ. Technol.
44
,
3614
3613
(
2022
).
28.
O.
Ashtari
,
M.
Pourjafar-Chelikdani
,
K.
Gharali
, and
K.
Sadeghy
, “
Peristaltic transport of elliptic particles: A numerical study
,”
Phys. Fluids
34
(
2
),
023314
(
2022
).
29.
D.
Ram
,
D. S.
Bhandari
,
D.
Tripathi
, and
K.
Sharma
, “
Propagation of H1N1 virus through saliva movement in oesophagus: A mathematical model
,”
Eur. Phys. J. Plus
137
(
7
),
866
(
2022
).
30.
D.
Ram
,
D. S.
Bhandari
,
K.
Sharma
, and
D.
Tripathi
, “
Progression of blood-borne viruses through bloodstream: A comparative mathematical study
,”
Comput. Methods Programs Biomed.
232
,
107425
(
2023
).
31.
B.
Taghilou
,
M.
Pourjafar
, and
K.
Sadeghy
, “
On the use of peristaltic waves for the transport of soft particles: A numerical study
,”
Phys. Fluids
32
(
6
),
062108
(
2020
).
32.
M. A.
Hassan
, “
Slow motion of a slip spherical particle through a viscoelastic Giesekus fluid in a peristaltic tube
,”
Phys. Scr.
94
(
10
),
105011
(
2019
).
33.
J. R.
Delanghe
,
T. T.
Kouri
,
A. R.
Huber
,
K.
Hannemann-Pohl
,
W. G.
Guder
,
A.
Lun
,
P.
Sinha
,
G.
Stamminger
, and
L.
Beier
, “
The role of automated urine particle flow cytometry in clinical practice
,”
Clin. Chim. Acta
301
(
1–2
),
1
18
(
2000
).
34.
A.
Riaz
and
M. A.
Sadiq
, “
Particle–fluid suspension of a non-Newtonian fluid through a curved passage: An application of urinary tract infections
,”
Front. Phys.
8
,
109
(
2020
).
35.
D.
Tripathi
,
D.
Bhandari
,
R.
Kumar
, and
Y.
Aboelkassem
, “
Modeling virus transport and dynamics in viscous flow medium
,”
J. Biol. Dyn.
17
(
1
),
2182373
(
2023
).
36.
P. C.
Shukla
and
D. K.
Chaube
, “
Electrokinetic basis of urinary transport
,”
Colloids Surf., A
92
(
1–2
),
159
167
(
1994
).
37.
A.
Bandopadhyay
,
D.
Tripathi
, and
S.
Chakraborty
, “
Electroosmosis-modulated peristaltic transport in microfluidic channels
,”
Phys. Fluids
28
(
5
),
052002
(
2016
).
38.
A.
Riaz
and
D.
Soo Chung
, “
Transient isotachophoresis of highly saline trace metals under strong electroosmotic flow conditions
,”
Electrophoresis
26
(
3
),
668
673
(
2005
).
39.
D. S.
Bhandari
,
D.
Tripathi
, and
O.
Anwar Bég
, “
Electro-osmosis modulated periodic membrane pumping flow and particle motion with magnetic field effects
,”
Phys. Fluids
34
(
9
),
092014
(
2022
).
40.
M. M.
Bhatti
,
S. M.
Sait
, and
R.
Ellahi
, “
Magnetic nanoparticles for drug delivery through tapered stenosed artery with blood based non-Newtonian fluid
,”
Pharmaceuticals
15
(
11
),
1352
(
2022
).
41.
M. M.
Bhatti
,
S. M.
Sait
,
R.
Ellahi
,
M. A.
Sheremet
, and
H.
Oztop
, “
Thermal analysis and entropy generation of magnetic Eyring-Powell nanofluid with viscous dissipation in a wavy asymmetric channel
,”
Int. J. Numer. Methods Heat Fluid Flow
33
(
5
),
1609
1636
(
2022
).
42.
B. K.
Sharma
,
R.
Gandhi
,
T.
Abbas
, and
M. M.
Bhatti
, “
Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery
,”
Appl. Math. Mech.
44
(
3
),
459
476
(
2023
).
43.
M. E.
Cates
and
J.
Tailleur
, “
Motility-induced phase separation
,”
Annu. Rev. Condens. Matter Phys.
6
(
1
),
219
244
(
2015
).
44.
Y.
and
Z.
Rong
, “
Current reversal of active particles in channel with time-oscillating boundaries
,”
J. Stat. Mech.
2021
(
1
),
013208
.
45.
P.-M.
Villeneuve
and
S. M.
Bagshaw
, “
Assessment of urine biochemistry
,” in
Critical Care Nephrology
, edited by
C.
Ronco
,
R.
Bellomo
,
J. A.
Kellum
, and
Z.
Ricci
(
Elsevier
,
2019
), pp. 
323
328
.
46.
S.
Boyarsky
,
C. W.
Gottschalk
, and
E. A.
Tanagho
,
Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis
(
Academic Press
,
2014
).
47.
Z.
Yan
et al, “
From Newtonian to non-Newtonian fluid: Insight into the impact of rheological characteristics on mineral deposition in urine collection and transportation
,”
Sci. Total Environ.
823
,
153532
(
2022
).
48.
S.
Sarathkumar
, “
A clinical study on Kalladaippu (urolithiasis) with the evaluation of siddha drug Karpoora Silasathu Parpam
,” Master dissertation (
Government Siddha Medical College
,
Chennai
,
2017
).
49.
Y.
Liu
,
M.
Li
,
L.
Qiang
,
X.
Sun
,
S.
Liu
, and
T. J.
Lu
, “
Critical size of kidney stone through ureter: A mechanical analysis
,”
J. Mech. Behav. Biomed. Mater.
135
,
105432
(
2022
).
You do not currently have access to this content.