Atherosclerosis, which causes the artery walls to thicken, the lumen to narrow, and the wall to thin in some places, is characterized by plaque accumulation in the arteries. These blood flow modifications can cause aneurysms and heart attacks if left unattended. Most of the arteries in the cardiovascular system are branched; therefore, a parent artery (main artery) with two daughter arteries (branched arteries) is considered in the present analysis. To examine the impact of various nanoparticle combinations on blood flow, four distinct nanoparticles, namely, gold (Au), graphene oxide (GO), copper (Cu), and tantalum (Ta), were injected into the blood to generate Au–GO–Cu–Ta/blood tetrahybrid nanofluid. In arteries with small diameters, blood behavior is regarded as non-Newtonian; therefore, blood behavior is governed by Jeffrey fluid in the present analysis. It has been investigated how Hall effects, Joule heating, radiation, and viscous dissipation affect blood flow through an artery that has an overlapping stenosis in the branches and a bell-shaped stenosis in the main artery. The approximation of mild stenosis is utilized to simplify and non-dimensionalize the governing equations. The Crank–Nicolson finite-difference scheme is used in MATLAB to solve the resulting equations. The results for velocity, temperature, wall shear stress, flow rate, and heat transfer rate are represented graphically. Furthermore, the entropy optimization has been performed for the specified problem. Enhancement in velocity with half of the bifurcation angle (η) can be observed from the velocity contours. The velocity of the tetrahybrid nanofluid increases with an increase in Jeffrey fluid parameter ( λ 1 *) and shape parameter of the nanoparticles (n) as well. Introducing nanoparticles into the bloodstream can improve targeted drug delivery, allowing for more precise treatment at the cellular level. In addition, the tunable properties of nanoparticles offer possibilities for enhanced therapeutic and diagnostic treatments in a variety of medical disorders.

1.
M. A.
Jamalabadi
,
A. A. A.
Bidokhti
,
H. K.
Rah
,
S.
Vaezi
, and
P.
Hooshmand
, “
Numerical investigation of oxygenated and deoxygenated blood flow through a tapered stenosed arteries in magnetic field
,”
PloS One
11
(
12
),
e0167393
(
2016
).
2.
B.
Vasu
,
A.
Dubey
,
O. A.
Bég
, and
R. S. R.
Gorla
, “
Micropolar pulsatile blood flow conveying nanoparticles in a stenotic tapered artery: Non-Newtonian pharmacodynamic simulation
,”
Comput. Biol. Med.
126
,
104025
(
2020
).
3.
C.
Kumawat
,
B.
Sharma
, and
K.
Mekheimer
, “
Mathematical analysis of two-phase blood flow through a stenosed curved artery with hematocrit and temperature dependent viscosity
,”
Phys. Scr.
96
(
12
),
125277
(
2021
).
4.
S.
Mohammadi
,
H.
Rafii-Tabar
, and
P.
Sasanpour
, “
Contribution of the dipole–dipole interaction to targeting efficiency of magnetite nanoparticles inside the blood vessel: A computational modeling analysis with different magnet geometries
,”
Phys. Fluids
34
(
3
),
033601
(
2022
).
5.
A.
Hussain
,
M. N. R.
Dar
,
W. K.
Cheema
,
E. M.
Tag-eldin
, and
R.
Kanwal
, “
Numerical simulation of unsteady generic Newtonian blood flow and heat transfer through discrepant shaped dilatable arterial stenosis
,”
Results Eng.
18
,
101189
(
2023
).
6.
R.
Gandhi
and
B. K.
Sharma
, “
Unsteady MHD hybrid nanoparticle (Au-Al2O3/blood) mediated blood flow through a vertical irregular stenosed artery: Drug delivery applications
,” in
Nonlinear Dynamics and Applications: Proceedings of the ICNDA 2022
(
Springer
,
2022
), pp.
325
337
.
7.
S. I.
Abdelsalam
and
M.
Bhatti
, “
Unraveling the nature of nano-diamonds and silica in a catheterized tapered artery: Highlights into hydrophilic traits
,”
Sci. Rep.
13
(
1
),
5684
(
2023
).
8.
D. N.
Ku
and
D. P.
Giddens
, “
Pulsatile flow in a model carotid bifurcation
,”
Arteriosclerosis
3
(
1
),
31
39
(
1983
).
9.
T.
Seo
, “
Numerical simulations of blood flow in arterial bifurcation models
,”
Korea-Aust. Rheol. J.
25
,
153
161
(
2013
).
10.
B.
Zhang
,
Y.
Jin
,
X.
Wang
,
T.
Zeng
, and
L.
Wang
, “
Numerical simulation of transient blood flow through the left coronary artery with varying degrees of bifurcation angles
,”
J. Mech. Med. Biol.
17
(
01
),
1750005
(
2017
).
11.
R.
Ponalagusamy
and
S.
Priyadharshini
, “
Pulsatile MHD flow of a Casson fluid through a porous bifurcated arterial stenosis under periodic body acceleration
,”
Appl. Math. Comput.
333
,
325
343
(
2018
).
12.
I.
Shahzadi
,
S.
Suleman
,
S.
Saleem
, and
S.
Nadeem
, “
Utilization of cu-nanoparticles as medication agent to reduce atherosclerotic lesions of a bifurcated artery having compliant walls
,”
Comput. Methods Programs Biomed.
184
,
105123
(
2020
).
13.
M.
Albadawi
,
Y.
Abuouf
,
S.
Elsagheer
,
S.
Ookawara
, and
M.
Ahmed
, “
Predicting the onset of consequent stenotic regions in carotid arteries using computational fluid dynamics
,”
Phys. Fluids
33
(
12
),
123106
(
2021
).
14.
A.
Dubey
,
B.
Vasu
,
O. A.
Bég
, and
R.
Gorla
, “
Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model
,”
Microvasc. Res.
138
,
104221
(
2021
).
15.
M.
Rezazadeh
and
R.
Ostadi
, “
Numerical simulation of the wall shear stress distribution in a carotid artery bifurcation
,”
J. Mech. Sci. Technol.
36
(
10
),
5035
5046
(
2022
).
16.
N. M.
Zain
and
Z.
Ismail
, “
Numerical solution of magnetohydrodynamics effects on a generalised power law fluid model of blood flow through a bifurcated artery with an overlapping shaped stenosis
,”
Plos One
18
(
2
),
e0276576
(
2023
).
17.
S.
Yekani Motlagh
and
S.
Deyhim
, “
Numerical study of magnetic drug targeting inside the bifurcated channel as a simplified model of right common iliac artery using Fe3O4–blood magnetic nanofluid
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
47
(
1
),
51
65
(
2023
).
18.
S.
Nadeem
,
S.
Ijaz
, and
N. S.
Akbar
, “
Nano particle analysis for the steady blood flow of Jeffrey fluid with stenosis with new analytical techniques
,”
J. Comput. Theor. Nanosci.
10
(
11
),
2751
2765
(
2013
).
19.
S.
Priyadharshini
and
R.
Ponalagusamy
, “
Computational model on pulsatile flow of blood through a tapered arterial stenosis with radially variable viscosity and magnetic field
,”
Sādhanā
42
,
1901
1913
(
2017
).
20.
R.
Padma
,
R. T.
Selvi
, and
R.
Ponalagusamy
, “
Effects of slip and magnetic field on the pulsatile flow of a Jeffrey fluid with magnetic nanoparticles in a stenosed artery
,”
Eur. Phys. J. Plus
134
(
5
),
221
(
2019
).
21.
B.
Sharma
,
A.
Kumar
,
R.
Gandhi
, and
M.
Bhatti
, “
Exponential space and thermal-dependent heat source effects on electro-magneto-hydrodynamic Jeffrey fluid flow over a vertical stretching surface
,”
Int. J. Mod. Phys. B
36
(
30
),
2250220
(
2022
).
22.
A.
Ali
,
A.
Barman
, and
S.
Das
, “
Electromagnetic phenomena in cilia actuated peristaltic transport of hybrid nano-blood with Jeffrey model through an artery sustaining regnant magnetic field
,”
Waves Random Complex Media
33
,
1
32
(
2022
).
23.
A.
Kumar
,
B. K.
Sharma
,
R.
Gandhi
,
N. K.
Mishra
, and
M.
Bhatti
, “
Response surface optimization for the electromagnetohydrodynamic cu-polyvinyl alcohol/water Jeffrey nanofluid flow with an exponential heat source
,”
J. Magn. Magn. Mater.
576
,
170751
(
2023
).
24.
K. S.
Mekheimer
and
M.
El Kot
, “
Influence of magnetic field and hall currents on blood flow through a stenotic artery
,”
Appl. Math. Mech.
29
,
1093
1104
(
2008
).
25.
N.
Eldabe
,
M.
Elogail
,
S.
Elshaboury
, and
A. A.
Hasan
, “
Hall effects on the peristaltic transport of Williamson fluid through a porous medium with heat and mass transfer
,”
Appl. Math. Modell.
40
(
1
),
315
328
(
2016
).
26.
M.
El Kot
and
W.
Abbas
, “
Numerical technique of blood flow through catheterized arteries with overlapping stenosis
,”
Comput. Methods Biomech. Biomed. Eng.
20
(
1
),
45
58
(
2017
).
27.
S.
Das
,
B.
Barman
,
R.
Jana
, and
O.
Makinde
, “
Hall and ion slip currents' impact on electromagnetic blood flow conveying hybrid nanoparticles through an endoscope with peristaltic waves
,”
BioNanoScience
11
(
3
),
770
792
(
2021
).
28.
L.
Ali
,
P.
Kumar
,
H.
Poonia
,
S.
Areekara
, and
R.
Apsari
, “
The significant role of Darcy–Forchheimer and thermal radiation on Casson fluid flow subject to stretching surface: A case study of dusty fluid
,”
Mod. Phys. Lett. B
36
,
2350215
(
2023
).
29.
U.
Khanduri
and
B.
Sharma
, “
Mathematical analysis of hall effect and hematocrit dependent viscosity on au/go-blood hybrid nanofluid flow through a stenosed catheterized artery with thrombosis
,” in
International Workshop of Mathematical Modelling, Applied Analysis and Computation
(
Springer
,
2022
), pp.
121
137
.
30.
A.
Gul
,
E. E.
Tzirtzilakis
, and
S. S.
Makhanov
, “
Simulation of targeted magnetic drug delivery: Two-way coupled biomagnetic fluid dynamics approach
,”
Phys. Fluids
34
(
2
),
021911
(
2022
).
31.
M. M.
Bhatti
,
M. H.
Doranehgard
, and
R.
Ellahi
, “
Electro-magneto-hydrodynamic Eyring-Powell fluid flow through micro-parallel plates with heat transfer and non-Darcian effects
,”
Math. Methods Appl. Sci.
46
(
10
),
11642
11656
(
2023
).
32.
M.
Sharma
,
B. K.
Sharma
,
U.
Khanduri
,
N. K.
Mishra
,
S.
Noeiaghdam
, and
U.
Fernandez-Gamiz
, “
Optimization of heat transfer nanofluid blood flow through a stenosed artery in the presence of hall effect and hematocrit dependent viscosity
,”
Case Study Therm. Eng.
47
,
103075
(
2023
).
33.
L. R.
Mashiku
and
S.
Shaw
, “
Unsteady nano-magnetic drug dispersion for pulsatile Darcy flow through microvessel with drug elimination phenomena
,”
Phys. Fluids
35
(
10
),
101909
(
2023
).
34.
B. K.
Sharma
,
C.
Kumawat
,
U.
Khanduri
, and
K. S.
Mekheimer
, “
Numerical investigation of the entropy generation analysis for radiative MHD power-law fluid flow of blood through a curved artery with hall effect
,”
Waves Random Complex Media
33
,
1
38
(
2023
).
35.
P.
Kumar
,
H.
Poonia
,
L.
Ali
,
S.
Areekara
, and
A.
Mathew
, “
Effects of different nanoparticles Cu, TiO2, and Ag on fluid flow and heat transfer over cylindrical surface subject to non-Fourier heat flux model
,”
Numer. Heat Transfer, Part B
84
,
1
19
(
2023
).
36.
S.
Sharma
,
V.
Katiyar
, and
U.
Singh
, “
Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field
,”
J. Magn. Magn. Mater.
379
,
102
107
(
2015
).
37.
A. K.
Roy
and
S.
Shaw
, “
Shear augmented microvascular solute transport with a two-phase model: Application in nanoparticle assisted drug delivery
,”
Phys. Fluids
33
(
3
),
031904
(
2021
).
38.
R.
Gandhi
,
B.
Sharma
,
C.
Kumawat
, and
O. A.
Bég
, “
Modeling and analysis of magnetic hybrid nanoparticle (Au-Al2O3/blood) based drug delivery through a bell-shaped occluded artery with joule heating, viscous dissipation and variable viscosity effects
,”
Proc. Inst. Mech. Eng., Part E
236
(
5
),
2024
2043
(
2022
).
39.
K. S.
Mekheimer
,
R.
Abo-Elkhair
,
S. I.
Abdelsalam
,
K. K.
Ali
, and
A.
Moawad
, “
Biomedical simulations of nanoparticles drug delivery to blood hemodynamics in diseased organs: Synovitis problem
,”
Int. Commun. Heat Mass Transfer
130
,
105756
(
2022
).
40.
L.
Ali
,
B.
Ali
, and
M. B.
Ghori
, “
Melting effect on Cattaneo-Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach
,”
Comput. Math. Appl.
109
,
260
269
(
2022
).
41.
R.
Gandhi
,
B. K.
Sharma
,
N. K.
Mishra
, and
Q. M.
Al-Mdallal
, “
Computer simulations of EMHD Casson nanofluid flow of blood through an irregular stenotic permeable artery: Application of Koo-Kleinstreuer-Li correlations
,”
Nanomaterials
13
(
4
),
652
(
2023
).
42.
B.
Sharma
,
R.
Gandhi
,
T.
Abbas
, and
M.
Bhatti
, “
Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery
,”
Appl. Math. Mech.
44
(
3
),
459
476
(
2023
).
43.
B.
Prasad
and
R.
Bali
, “
Mathematical study of nanoparticle loaded in red blood cells for drug delivery in an artery with stenosis
,”
Phys. Fluids
35
(
9
),
091902
(
2023
).
44.
T.-Q.
Tang
,
M.
Rooman
,
Z.
Shah
,
M. A.
Jan
,
N.
Vrinceanu
, and
M.
Racheriu
, “
Computational study and characteristics of magnetized gold-blood Oldroyd-B nanofluid flow and heat transfer in stenosis narrow arteries
,”
J. Magn. Magn. Mater.
569
,
170448
(
2023
).
45.
Z.
Ouyang
,
H.
Ye
,
J.
Lin
, and
N.
Phan-Thien
, “
Interface-resolved simulations of particles in active nematics
,”
Phys. Fluids
35
(
6
),
063332
(
2023
).
46.
U.
Khanduri
,
B. K.
Sharma
,
M.
Sharma
,
N. K.
Mishra
, and
N.
Saleem
, “
Sensitivity analysis of electroosmotic magnetohydrodynamics fluid flow through the curved stenosis artery with thrombosis by response surface optimization
,”
Alexandria Eng. J.
75
,
1
27
(
2023
).
47.
P.
Kumar
,
H.
Poonia
, and
L.
Ali
, “
Insight into the dynamics of active and passive controls over the measurement of thermal conductivity of nanofluids subject to magnetic field and thermal radiation through the stretching surface
,”
Numer. Heat Transfer, Part A
84
,
1
16
(
2023
).
48.
T.
Sajid
,
W.
Jamshed
,
M. R.
Eid
,
G. C.
Altamirano
,
F.
Aslam
,
A. M.
Alanzi
, and
A.
Abd-Elmonem
, “
Magnetized cross tetra hybrid nanofluid passed a stenosed artery with nonuniform heat source (sink) and thermal radiation: Novel tetra hybrid Tiwari and Das nanofluid model
,”
J. Magn. Magn. Mater.
569
,
170443
(
2023
).
49.
L.
Ali
,
P.
Kumar
,
Z.
Iqbal
,
S. E.
Alhazmi
,
S.
Areekara
,
M.
Alqarni
,
A.
Mathew
, and
R.
Apsari
, “
The optimization of heat transfer in thermally convective micropolar-based nanofluid flow by the influence of nanoparticle's diameter and nanolayer via stretching sheet: Sensitivity analysis approach
,”
J. Non-Equilib. Thermodyn.
48
,
313
(
2023
).
50.
B.
Sharma
,
R.
Gandhi
, and
M.
Bhatti
, “
Entropy analysis of thermally radiating MHD slip flow of hybrid nanoparticles (Au-Al2O3/blood) through a tapered multi-stenosed artery
,”
Chem. Phys. Lett.
790
,
139348
(
2022
).
51.
M. H.
Shahzad
,
A. U.
Awan
,
S.
Akhtar
, and
S.
Nadeem
, “
Entropy and stability analysis on blood flow with nanoparticles through a stenosed artery having permeable walls
,”
Sci. Prog.
105
(
2
),
003685042210960
(
2022
).
52.
B.
Sharma
,
R.
Gandhi
,
N. K.
Mishra
, and
Q. M.
Al-Mdallal
, “
Entropy generation minimization of higher-order endothermic/exothermic chemical reaction with activation energy on MHD mixed convective flow over a stretching surface
,”
Sci. Rep.
12
(
1
),
17688
(
2022
).
53.
M.
Bhatti
,
S. M.
Sait
,
R.
Ellahi
,
M. A.
Sheremet
, and
H.
Oztop
, “
Thermal analysis and entropy generation of magnetic Eyring–Powell nanofluid with viscous dissipation in a wavy asymmetric channel
,”
Int. J. Numer. Methods Heat Fluid Flow
33
(
5
),
1609
1636
(
2022
).
54.
R.
Gandhi
,
B. K.
Sharma
, and
O. D.
Makinde
, “
Entropy analysis for MHD blood flow of hybrid nanoparticles (Au–Al2O3/blood) of different shapes through an irregular stenosed permeable walled artery under periodic body acceleration: Hemodynamical applications
,”
ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
2022
,
e202100532
.
55.
B. K.
Sharma
,
C.
Kumawat
, and
M. M.
Bhatti
, “
Optimizing energy generation in power-law nanofluid flow through curved arteries with gold nanoparticles
,”
Numer. Heat Transfer, Part A
2023
,
1
33
.
56.
R.
Gandhi
,
B.
Sharma
,
Q. M.
Al-Mdallal
, and
H.
Mittal
, “
Entropy generation and shape effects analysis of hybrid nanoparticles (Cu-Al2O3/blood) mediated blood flow through a time-variant multi-stenotic artery
,”
Int. J. Thermofluids
18
,
100336
(
2023
).
57.
B. K.
Sharma
,
A.
Kumar
,
R.
Gandhi
,
M. M.
Bhatti
, and
N. K.
Mishra
, “
Entropy generation and thermal radiation analysis of EMHD Jeffrey nanofluid flow: Applications in solar energy
,”
Nanomaterials
13
(
3
),
544
(
2023
).
58.
R.
Gandhi
and
B.
Sharma
, “
Modelling pulsatile blood flow using Casson fluid model through an overlapping stenotic artery with au-cu hybrid nanoparticles: Varying viscosity approach
,” in
International Workshop of Mathematical Modelling, Applied Analysis and Computation
(
Springer
,
2022
), pp.
155
176
.
59.
K. S.
Mekheimer
,
I.
Shahzadi
,
S.
Nadeem
,
A.
Moawad
, and
A.
Zaher
, “
Reactivity of bifurcation angle and electroosmosis flow for hemodynamic flow through aortic bifurcation and stenotic wall with heat transfer
,”
Phys. Scr.
96
(
1
),
015216
(
2020
).
60.
R.
Ellahi
,
M.
Raza
, and
K.
Vafai
, “
Series solutions of non-Newtonian nanofluids with Reynolds' model and Vogel's model by means of the homotopy analysis method
,”
Math. Comput. Modell.
55
(
7–8
),
1876
1891
(
2012
).
61.
S.
Rahman
,
R.
Ellahi
,
S.
Nadeem
, and
Q. Z.
Zia
, “
Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis
,”
J. Mol. Liq.
218
,
484
493
(
2016
).
62.
S.
Das
,
T.
Pal
,
R.
Jana
, and
B.
Giri
, “
Significance of hall currents on hybrid nano-blood flow through an inclined artery having mild stenosis: Homotopy perturbation approach
,”
Microvasc. Res.
137
,
104192
(
2021
).
63.
S.
Dolui
,
B.
Bhaumik
, and
S.
De
, “
Combined effect of induced magnetic field and thermal radiation on ternary hybrid nanofluid flow through an inclined catheterized artery with multiple stenosis
,”
Chem. Phys. Lett.
811
,
140209
(
2023
).
64.
J. D.
Anderson
and
J.
Wendt
,
Computational Fluid Dynamics
(
Springer
,
1995
), vol.
206
.
You do not currently have access to this content.