Heart valves are essential for maintaining unidirectional blood flow, and their failure can severely affect cardiac functions. The use of artificial heart valves as replacement has proven to be a reliable and effective solution. Computational fluid dynamics has emerged as a powerful numerical tool for investigating the design, performance, and malfunctioning of mechanical heart valves without the need for invasive procedures. In this study, we employed smoothed particle hydrodynamics (SPH) in an open-source code “DualSPHysics,” to study the hemodynamics of a bi-leaflet mechanical heart valve (BMHV). The proposed SPH method was validated against the traditional finite volume method and experimental data, highlighting its suitability for simulating the heart valve function. The Lagrangian description of motion in SPH is particularly advantageous for fluid–structure interaction (FSI), making it well-suited for accurately modeling the heart valve dynamics. Furthermore, the SPH/FSI technique was applied to investigate the hemodynamic abnormalities associated with BMHV dysfunction. This work represents the first attempt to use SPH to model flow through a realistic BMHV by incorporating FSI. The normal and altered flow behavior and the movement dynamics of the BMHV under various blockage scenarios have also been investigated along with the potential risks of the blocked mechanical valve. The findings demonstrate that this SPH/FSI approach provides a unique, effective, and valuable tool for accurately capturing the transient hemodynamic behavior of bi-leaflet heart valves and its versatility enables the application to more complex patient-specific issues related to cardiovascular diseases.

1.
R.
Roudaut
,
K.
Serri
, and
S.
Lafitte
, “
Thrombosis of prosthetic heart valves: Diagnosis and therapeutic considerations
,”
Heart
93
(
1
),
137
142
(
2007
).
2.
G.
Rizzoli
,
C.
Guglielmi
,
G.
Toscano
,
V.
Pistorio
,
I.
Vendramin
,
T.
Bottio
,
G.
Thiene
, and
D.
Casarotto
, “
Reoperations for acute prosthetic thrombosis and pannus: An assessment of rates, relationship and risk
,”
Eur. J. Cardio-Thorac. Surg.
16
(
1
),
74
80
(
1999
).
3.
Y.
Sakamoto
,
K.
Hashimoto
,
H.
Okuyama
,
S.
Ishii
,
T.
Shingo
, and
H.
Kagawa
, “
Prevalence of pannus formation after aortic valve replacement: Clinical aspects and surgical management
,”
J. Artif. Organs
9
(
3
),
199
202
(
2006
).
4.
M.
Shiraishi
,
C.
Kimura
,
T.
Takeuchi
,
M.
Kanoh
,
K.
Muramatsu
,
A.
Yamaguchi
, and
H.
Adachi
, “
Pannus-related mechanical valve dysfunction leading to hemodynamic shock
,”
Arch. Clin. Exp. Surg.
1
(
1
),
50
(
2012
).
5.
A.
Deyranlou
,
J. H.
Naish
,
C. A.
Miller
,
A.
Revell
, and
A.
Keshmiri
, “
Numerical study of atrial fibrillation effects on flow distribution in aortic circulation
,”
Ann. Biomed. Eng.
48
(
4
),
1291
(
2020
).
6.
M.
Mcelroy
,
Y.
Kim
,
G.
Niccoli
,
R.
Vergallo
,
A. L.
Smith
,
F.
Crea
,
F.
Gijsen
,
T.
Johnson
,
A.
Keshmiri
, and
S.
White
, “
Identification of the haemodynamic environment permissive for plaque erosion
,”
Sci. Rep.
11
,
7253
(
2021
).
7.
L.
Swanson
,
B.
Owen
,
A.
Keshmiri
, and
A.
Deyranlou
et al., “
A patient-specific CFD pipeline using doppler echocardiography for application in coarctation of the aorta in limited resource clinical context
,”
Front. Bioeng. Biotechnol.
8
,
409
(
2020
).
8.
A.
Deyranlou
,
C. A.
Miller
,
A.
Revell
, and
A.
Keshmiri
, “
Effects of ageing on aortic circulation during atrial fibrillation; A numerical study on different aortic morphologies
,”
Ann. Biomed. Eng.
49
,
2196
(
2021
).
9.
A.
Ruiz-Soler
,
F.
Kabinejadian
,
M. M. A.
Slevin
,
P. J. P. J.
Bartolo
, and
A.
Keshmiri
, “
Optimisation of a novel spiral-inducing bypass graft using computational fluid dynamics
,”
Sci. Rep.
7
(
1
),
1865
(
2017
).
10.
G.
Di Labbio
and
L.
Kadem
, “
Reduced-order modeling of left ventricular flow subject to aortic valve regurgitation
,”
Phys. Fluids
31
(
3
),
031901
(
2019
).
11.
J.
Kang
,
H. J.
Koo
,
D. H.
Yang
, and
H.
Ha
, “
Sinus hemodynamics after transcatheter aortic valve implantation: Effect of native leaflet length and aortic sinus diameter
,”
Phys. Fluids
35
(
6
),
061910
(
2023
).
12.
A.
Xenakis
,
A.
Ruiz-Soler
, and
A.
Keshmiri
, “
Multi-objective optimisation of a novel bypass graft with a spiral ridge
,”
Bioengineering
10
(
4
),
489
(
2023
).
13.
M.
McElroy
,
A.
Xenakis
, and
A.
Keshmiri
, “
Impact of heart failure severity on ventricular assist device haemodynamics: A computational study
,”
Res. Biomed. Eng.
36
(
4
),
489
500
(
2020
).
14.
A.
Deyranlou
,
A.
Revell
, and
A.
Keshmiri
, “
Exergy destruction in atrial fibrillation and a new ‘Exergy Age Index’
,”
J. Theor. Biol.
575
,
111623
(
2023
).
15.
G. B.
Lopez-Santana
,
A.
De Rosis
,
S. W.
Grant
,
R.
Venkateswaran
, and
A.
Keshmiri
, “
(966) Computational fluid dynamics as a surgical tool to optimise the positioning of the LVAD outflow graft for reducing aortic regurgitation
,”
J. Hear. Lung Transplant
42
(
4
),
S416
(
2023
).
16.
S. S.
Abbas
,
M. S.
Nasif
,
R.
Al-Waked
, and
M. A.
Meor Said
, “
Numerical investigation on the effect of bileaflet mechanical heart valve's implantation tilting angle and aortic root geometry on intermittent regurgitation and platelet activation
,”
Artif. Organs
44
(
2
),
E20
E39
(
2020
).
17.
O.
Smadi
,
M.
Fenech
,
I.
Hassan
, and
L.
Kadem
, “
Flow through a defective mechanical heart valve: A steady flow analysis
,”
Med. Eng. Phys.
31
(
3
),
295
305
(
2009
).
18.
M. E.
James
,
D. V.
Papavassiliou
, and
E. A.
O'Rear
, “
Use of computational fluid dynamics to analyze blood flow, hemolysis and sublethal damage to red blood cells in a bileaflet artificial heart valve
,”
Fluids
4
(
1
),
19
(
2019
).
19.
S. K.
Kadhim
,
M. S.
Nasif
, and
H. H.
Al-kayiem
, “
Computational fluid dynamics simulation of blood flow profile and shear stresses in bileaflet mechanical heart valve by using monolithic approach
,”
Simulation
94
(
2
),
93
104
(
2018
).
20.
L.
Ge
,
S. C.
Jones
,
F.
Sotiropoulos
,
T. M.
Healy
, and
A. P.
Yoganathan
, “
Numerical simulation of flow in mechanical heart valves: Grid resolution and the assumption of flow symmetry
,”
J. Biomech. Eng.
125
(
5
),
709
718
(
2003
).
21.
K.
Dumont
,
J.
Vierendeels
,
R.
Kaminsky
,
G.
Van Nooten
,
P.
Verdonck
, and
D.
Bluestein
, “
Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model
,”
J. Biomech. Eng.
129
(
4
),
558
565
(
2007
).
22.
M.
Ahmed
,
N.
Gupta
,
R.
Jana
,
M. K.
Das
, and
K. K.
Kar
, “
Ramifications of vorticity on aggregation and activation of platelets in bi-leaflet mechanical heart valve: Fluid-structure-interaction study
,”
J. Biomech. Eng.
144
(
8
),
081002
(
2022
).
23.
O.
Smadi
,
I.
Hassan
,
P.
Pibarot
, and
L.
Kadem
, “
Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve
,”
J. Biomech.
43
(
8
),
1565
1572
(
2010
).
24.
F.
Khalili
,
P. P. T.
Gamage
,
R. H.
Sandler
, and
H. A.
Mansy
, “
Adverse hemodynamic conditions associated with mechanical heart valve leaflet immobility
,”
Bioengineering
5
(
3
),
74
16
(
2018
).
25.
T. J. R.
Hughes
,
W. K.
Liu
, and
T. K.
Zimmermann
, “
Lagrangian-Eulerian finite element formulation for incompressible viscous flows
,”
Comput. Methods Appl. Mech. Eng.
29
(
3
),
329
349
(
1981
).
26.
C. S.
Peskin
, “
Flow patterns around heart valves: A numerical method
,”
J. Comput. Phys.
10
(
2
),
252
271
(
1972
).
27.
S. G.
Cai
,
A.
Ouahsine
, and
Y.
Hoarau
, “
Moving immersed boundary method for fluid-solid interaction
,”
Phys. Fluids
34
(
5
),
053307
(
2022
).
28.
X.
Zhao
,
L.
Yang
,
C.
Xu
, and
C.
Shu
, “
An overset boundary condition-enforced immersed boundary method for incompressible flows with large moving boundary domains
,”
Phys. Fluids
34
(
10
),
103613
(
2022
).
29.
J.
Wang
,
C.
Zhou
, and
J.
Ai
, “
A hybrid immersed-boundary/body-fitted-grid method and its application to simulating heart valve flows
,”
Numer. Methods Fluids
94
(
12
),
1996
2019
(
2022
).
30.
E. M.
Kolahdouz
,
D. R.
Wells
,
S.
Rossi
,
K. I.
Aycock
,
B. A.
Craven
, and
B. E.
Griffith
, “
A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction
,”
J. Comput. Phys.
488
,
112174
(
2023
).
31.
J. J.
Monaghan
, “
Smoothed particle hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
30
(
1
),
543
574
(
1992
).
32.
N.
Quinlan
and
L.
Lobovský
, “
The finite volume particle method: Toward a meshless technique for biomedical fluid dynamics
,”
Numer. Methods Adv. Simul. Biomech. Biol. Processes
2018
,
341
354
.
33.
S.
Shahriari
,
L.
Kadem
,
B. D.
Rogers
, and
I.
Hassan
, “
Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity
,”
Numer. Methods Biomed. Eng.
28
(
11
),
1121
1143
(
2012
).
34.
N.
Amanifard
,
B.
Rahbar
, and
M.
Hesan
, “
Numerical simulation of the mitral valve opening using smoothed particle hydrodynamics
,” in
Proceedings of the World Congress on Engineering (WCE 2011)
(IAE,
2011
), Vol.
3
, pp.
2308
2312
, see https://www.iaeng.org/publication/WCE2011/WCE2011_pp2308-2312.pdf.
35.
W.
Mao
,
K.
Li
, and
W.
Sun
, “
Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics
,”
Cardiovasc. Eng. Technol.
7
(
4
),
374
388
(
2016
).
36.
S.
Shahriari
,
H.
Maleki
,
I.
Hassan
, and
L.
Kadem
, “
Evaluation of shear stress accumulation on blood components in normal and dysfunctional bileaflet mechanical heart valves using smoothed particle hydrodynamics
,”
J. Biomech.
45
(
15
),
2637
2644
(
2012
).
37.
W.
Dehnen
and
H.
Aly
, “
Improving convergence in smoothed particle hydrodynamics simulations without pairing instability
,”
Mon. Not. R. Astron. Soc.
425
(
2
),
1068
1082
(
2012
).
38.
H.
Wendland
, “
Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
,”
Adv. Comput. Math.
4
(
1
),
389
396
(
1995
).
39.
D.
Violeau
and
B. D.
Rogers
, “
Smoothed particle hydrodynamics (SPH) for free-surface flows: Past, present and future
,”
J. Hydraul. Res.
54
(
1
),
1
26
(
2016
).
40.
D.
Violeau
,
Fluid Mechanics and the SPH Method
(
Oxford University Press
,
2012
).
41.
A. J. C.
Crespo
,
J. M.
Domínguez
,
B. D.
Rogers
,
M.
Gómez-Gesteira
,
S.
Longshaw
,
R.
Canelas
,
R.
Vacondio
,
A.
Barreiro
, and
O.
García-Feal
, “
DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH)
,”
Comput. Phys. Commun.
187
,
204
216
(
2015
).
42.
H.
Gotoh
,
T.
Shibahara
, and
T.
Sakai
, “
Sub-particle-scale turbulence model for the MPS method - Lagrangian flow model for hydraulic engineering
,”
Comput. Fluid Dyn. J.
9
(
4
),
339
347
(
2001
).
43.
R. A.
Dalrymple
and
B. D.
Rogers
, “
Numerical modeling of water waves with the SPH method
,”
Coast. Eng.
53
(
2–3
),
141
147
(
2006
).
44.
E. Y. M.
Lo
and
S.
Shao
, “
Simulation of near-shore solitary wave mechanics by an incompressible SPH method
,”
Appl. Ocean Res.
24
(
5
),
275
286
(
2002
).
45.
J. J.
Monaghan
, “
Simulating free surface
,”
J. Comput. Phys.
110
,
399
406
(
1994
).
46.
C.
Batchelor
and
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
2000
).
47.
J. J.
Monaghan
,
R. A. F.
Cas
,
A. M.
Kos
, and
M.
Hallworth
, “
Gravity currents descending a ramp in a stratified tank
,”
J. Fluid Mech.
379
,
39
70
(
1999
).
48.
J. M.
Domínguez
,
G.
Fourtakas
,
C.
Altomare
,
R. B.
Canelas
,
A.
Tafuni
,
O.
García-Feal
,
I.
Martínez-Estévez
,
A.
Mokos
,
R.
Vacondio
,
A. J. C.
Crespo
,
B. D.
Rogers
,
P. K.
Stansby
, and
M.
Gómez-Gesteira
, “
DualSPHysics: From fluid dynamics to multiphysics problems
,”
Comput. Part. Mech.
9
(
5
),
867
895
(
2022
).
49.
A.
Skillen
,
S.
Lind
,
P. K.
Stansby
, and
B. D.
Rogers
, “
Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction
,”
Comput. Methods Appl. Mech. Eng.
265
,
163
173
(
2013
).
50.
C.
Gregan
,
D.
Moy
,
N.
Newberger
, and
M.
Siomos
, “
Shear stress induced thrombogenicity of a trileaflet mechanical heart valve
,” thesis (
2019
), see https://ecommons.cornell.edu/server/api/core/bitstreams/6141b4e1-c37f-4772-af58-20a7eda62593/content.
51.
A.
Tasora
,
R.
Serban
,
H.
Mazhar
,
A.
Pazouki
,
D.
Melanz
,
J.
Fleischmann
,
M.
Taylor
,
H.
Sugiyama
, and
D.
Negrut
,
High Performance Computing in Science and Engineering
, edited by
T.
Kozubek
,
R.
Blaheta
,
J.
Šístek
,
M.
Rozložník
, and
M.
Čermák
(
Springer International Publishing
,
Cham
,
2016
), pp.
19
49
.
52.
I.
Martínez-Estévez
,
J. M.
Domínguez
,
B.
Tagliafierro
,
R. B.
Canelas
,
O.
García-Feal
,
A. J. C.
Crespo
, and
M.
Gómez-Gesteira
, “
Coupling of an SPH-based solver with a multiphysics library
,”
Comput. Phys. Commun.
283
,
108581
(
2023
).
53.
A.
Tafuni
,
J. M.
Domínguez
,
R.
Vacondio
, and
A. J. C.
Crespo
, “
A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models
,”
Comput. Methods Appl. Mech. Eng.
342
,
604
624
(
2018
).
54.
L. P.
Dasi
,
L.
Ge
,
A. H.
Simon
,
F.
Sotiropoulos
, and
P. A.
Yoganathan
, “
Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta
,”
Phys. Fluids
19
(
6
),
067105
(
2007
).
55.
M. D.
De Tullio
,
A.
Cristallo
,
E.
Balaras
, and
R.
Verzicco
, “
Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve
,”
J. Fluid Mech.
622
,
259
290
(
2009
).
56.
M.
Iasiello
,
K.
Vafai
,
A.
Andreozzi
, and
N.
Bianco
, “
Analysis of non-Newtonian effects within an aorta-iliac bifurcation region
,”
J. Biomech.
64
,
153
163
(
2017
).
57.
K.
Perktold
,
M.
Resch
, and
H.
Florian
, “
Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model
,”
J. Biomech. Eng.
113
(
4
),
464
475
(
1991
).
58.
T. J.
Pedley
,
The Fluid Mechanics of Large Blood Vessels
(
Cambridge University Press
,
1980
).
59.
A.
Keshmiri
and
K.
Andrews
,
Handbook of Vascular Biology Techniques
(
Springer Science+Business Media
,
Dordrecht
,
2015
), pp.
343
361
.
60.
M.
Brito
,
R.
Canelas
,
R.
Ferreira
,
O.
García Feal
,
J.
Domínguez
,
A.
Crespo
, and
M.
Neves
, “
Coupling DualSPHysics and Project Chrono: Towards large scale HPC multiphysics simulations
,” in Proceedings of the 11th International SPHERIC (SPHERIC 2016) Workshop, Munich Germany (SPHERIC, 2016), pp.
93
99
.
61.
R. B.
Canelas
,
M.
Brito
,
O. G.
Feal
,
J. M.
Domínguez
, and
A. J. C.
Crespo
, “
Extending DualSPHysics with a differential variational inequality: Modeling fluid-mechanism interaction
,”
Appl. Ocean Res.
76
,
88
97
(
2018
).
62.
I.
Borazjani
,
L.
Ge
, and
F.
Sotiropoulos
, “
Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies
,”
J. Comput. Phys.
227
(
16
),
7587
7620
(
2008
).
63.
W.
Kim
,
H.
Choi
,
J.
Kweon
,
D. H.
Yang
, and
Y. H.
Kim
, “
Effects of pannus formation on the flow around a bileaflet mechanical heart valve
,”
PLoS ONE
15
(
6
),
e0234341
19
(
2020
).
64.
M.
McElroy
,
A.
Ruiz-Soler
, and
A.
Keshmiri
, “
Left ventricular assist devices: Impact of flow ratios on the localisation of cardiovascular diseases using computational fluid dynamics
,”
Proc. CIRP
49
,
163
169
(
2016
).
65.
W.
Elliott
,
A.
Keshmiri
, and
W.
Tan
“Exploitation of mechanobiology for cardiovascular therapy,” in
Mechanobiology
(
Wiley
,
2017
), pp.
373
400
.
66.
E. R.
Chafizadeh
and
W. A.
Zoghbi
, “
Doppler echocardiographic assessment of the St. Jude medical prosthetic valve in the aortic position using the continuity equation
,”
Circulation
83
(
1
),
213
223
(
1991
).
67.
M. V.
Kameneva
,
G. W.
Burgreen
,
K.
Kono
,
B.
Repko
,
J. F.
Antaki
, and
M.
Umezu
, “
Effects of turbulent stresses upon mechanical hemolysis: Experimental and computational analysis
,”
ASAIO J.
50
(
5
),
418
423
(
2004
).
68.
J.-J.
Chiu
and
S.
Chien
, “
Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives
,”
Physiol. Rev.
91
(
1
),
327
387
(
2011
).
69.
C. M.
Otto
,
R. A.
Nishimura
,
R. O.
Bonow
,
B. A.
Carabello
,
J. P.
Erwin
,
F.
Gentile
,
H.
Jneid
,
E. V.
Krieger
,
M.
Mack
,
C.
McLeod
,
P. T.
O'Gara
,
V. H.
Rigolin
,
T. M.
Sundt
,
A.
Thompson
, and
C.
Toly
, “
2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines
,”
J. Am. Coll. Cardiol.
77
(
4
),
e25
e197
(
2021
).
70.
A.
Vahanian
,
F.
Beyersdorf
,
F.
Praz
,
M.
Milojevic
,
S.
Baldus
,
J.
Bauersachs
,
D.
Capodanno
,
L.
Conradi
,
M.
De Bonis
,
R.
De Paulis
,
V.
Delgado
,
N.
Freemantle
,
M.
Gilard
,
K. H.
Haugaa
,
A.
Jeppsson
,
P.
Jüni
,
L.
Pierard
,
B. D.
Prendergast
,
J. R.
Sádaba
,
C.
Tribouilloy
, and
W.
Wojakowski
, “
2021 ESC/EACTS guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)
,”
Eur. Heart J.
43
(
7
),
561
632
(
2022
).

Supplementary Material

You do not currently have access to this content.