Odor-guided navigation is an indispensable aspect of flying insects' behavior, facilitating crucial activities such as foraging and mating. The interaction between aerodynamics and olfaction plays a pivotal role in the odor-guided flight behaviors of insects, yet the interplay of these two functions remains incompletely understood. In this study, we developed a fully coupled three-way numerical solver, which solves the three-dimensional Navier–Stokes equations coupled with equations of motion for the passive flapping wings, and the odorant advection–diffusion equation. This numerical solver is applied to investigate the unsteady flow field and the odorant transport phenomena of a fruit fly model in odor-guided upwind surge flight over a broad spectrum of reduced frequencies (0.325–1.3) and Reynolds numbers (90–360). Our results uncover a complex dependency between flight velocity and odor plume perception, modulated by the reduced frequency of flapping flight. At low reduced frequencies, the flapping wings disrupt the odor plume, creating a saddle point of air flow near the insect's thorax. Conversely, at high reduced frequencies, the wing-induced flow generates a stagnation point, in addition to the saddle point, that alters the aerodynamic environment around the insect's antennae, thereby reducing odor sensitivity but increasing the sampling range. Moreover, an increase in Reynolds number was found to significantly enhance odor sensitivity due to the synergistic effects of greater odor diffusivity and stronger wing-induced flow. These insights hold considerable implications for the design of bio-inspired, odor-guided micro air vehicles in applications like surveillance and detection.

1.
M. A.
Willis
, “
Chemical plume tracking behavior in animals and mobile robots
,”
Navigation
55
,
127
(
2008
).
2.
J. L.
Talley
,
E. B.
White
, and
M. A.
Willis
, “
A comparison of odor plume-tracking behavior of walking and flying insects in different turbulent environments
,”
J. Exp. Biol.
226
,
jeb244254
(
2023
).
3.
A.
Gomez-Marin
,
B.
Duistermars
,
M. A.
Frye
, and
M.
Louis
, “
Mechanisms of odor-tracking: Multiple sensors for enhanced perception and behavior
,”
Front. Cell. Neurosci.
4
,
6
(
2010
).
4.
A. F.
Carey
,
G.
Wang
,
C.-Y.
Su
,
L. J.
Zwiebel
, and
J. R.
Carlson
, “
Odorant reception in the malaria mosquito Anopheles gambiae
,”
Nature
464
,
66
(
2010
).
5.
A.
Egea-Weiss
,
A.
Renner
,
C. J.
Kleineidam
, and
P.
Szyszka
, “
High precision of spike timing across olfactory receptor neurons allows rapid odor coding in Drosophila
,”
iScience
4
,
76
(
2018
).
6.
P.
Szyszka
,
R. C.
Gerkin
,
C. G.
Galizia
, and
B. H.
Smith
, “
High-speed odor transduction and pulse tracking by insect olfactory receptor neurons
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
16925
(
2014
).
7.
K.
Parthasarathy
and
M.
Willis
, “
Spatial odor discrimination in the hawkmoth, Manduca sexta (L.)
,”
Biol. Open
10
,
bio058649
(
2021
).
8.
M. A.
Willis
,
E.
Ford
, and
J.
Avondet
, “
Odor tracking flight of male Manduca sexta moths along plumes of different cross-sectional area
,”
J. Comp. Physiol., A
199
,
1015
(
2013
).
9.
R.
Pang
,
F.
van Breugel
,
M.
Dickinson
,
J. A.
Riffell
, and
A.
Fairhall
, “
History dependence in insect flight decisions during odor tracking
,”
PLoS Comput. Biol.
14
,
e1005969
(
2018
).
10.
M.
Geier
,
O. J.
Bosch
, and
J.
Boeckh
, “
Influence of odour plume structure on upwind flight of mosquitoes towards hosts
,”
J. Exp. Biol.
202
,
1639
(
1999
).
11.
A.
Mafra-Neto
and
R. T.
Cardé
, “
Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths
,”
Nature
369
,
142
(
1994
).
12.
F.
van Breugel
and
M. H.
Dickinson
, “
Plume-tracking behavior of flying Drosophila emerges from a set of distinct sensory-motor reflexes
,”
Curr. Biol.
24
,
274
(
2014
).
13.
B. T.
Michaelis
,
K. W.
Leathers
,
Y. V.
Bobkov
,
B. W.
Ache
,
J. C.
Principe
,
R.
Baharloo
,
I. M.
Park
, and
M. A.
Reidenbach
, “
Odor tracking in aquatic organisms: The importance of temporal and spatial intermittency of the turbulent plume
,”
Sci. Rep.
10
,
7961
(
2020
).
14.
T. J.
Steele
,
A. J.
Lanz
, and
K. I.
Nagel
, “
Olfactory navigation in arthropods
,”
J. Comp. Physiol., A
209
,
467
(
2023
).
15.
C. P.
Ellington
,
C.
van den Berg
,
A. P.
Willmott
, and
A. L. R.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature
384
,
626
(
1996
).
16.
M. H.
Dickinson
,
F. O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
,
1954
(
1999
).
17.
R. J.
Bomphrey
,
T.
Nakata
,
N.
Phillips
, and
S. M.
Walker
, “
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
,”
Nature
544
,
92
(
2017
).
18.
S. P.
Sane
and
N. P.
Jacobson
, “
Induced airflow in flying insects II. Measurement of induced flow
,”
J. Exp. Biol.
209
,
43
(
2006
).
19.
C.
Loudon
and
M.
Koehl
, “
Sniffing by a silkworm moth: Wing fanning enhances air penetration through and pheromone interception by antennae
,”
J. Exp. Biol.
203
,
2977
(
2000
).
20.
K. R.
Mylne
and
P.
Mason
, “
Concentration fluctuation measurements in a dispersing plume at a range of up to 1000 m
,”
Q. J. R. Meteorol. Soc.
117
,
177
(
1991
).
21.
K. R.
Mylne
, “
Concentration fluctuation measurements in a plume dispersing in a stable surface layer
,”
Boundary-Layer Meteorol.
60
,
15
(
1992
).
22.
P. A.
Moore
and
J.
Atema
, “
Spatial information in the three-dimensional fine structure of an aquatic odor plume
,”
Biol. Bull.
181
,
408
(
1991
).
23.
C.
Li
, “
Effects of wing pitch kinematics on both aerodynamic and olfactory functions in an upwind surge
,”
Proc. Inst. Mech. Eng., Part C
235
,
296
(
2021
).
24.
C.
Li
,
H.
Dong
, and
K.
Zhao
, “
Dual functions of insect wings in an odor-guided aeronautic navigation
,”
J. Fluids Eng.
142
,
030902
(
2020
).
25.
C.
Li
,
H.
Dong
, and
K.
Zhao
, “
A balance between aerodynamic and olfactory performance during flight in Drosophila
,”
Nat. Commun.
9
(
1
),
3215
(
2018
).
26.
M.
Lei
and
C.
Li
, “
Numerical investigation of the passive pitching mechanism in odor-tracking flights
,” AIAA Paper No. 2020-3016,
2020
.
27.
S. N.
Fry
,
R.
Sayaman
, and
M. H.
Dickinson
, “
The aerodynamics of free-flight maneuvers in Drosophila
,”
Science
300
,
495
(
2003
).
28.
A. J.
Bergou
,
L.
Ristroph
,
J.
Guckenheimer
,
I.
Cohen
, and
Z. J.
Wang
, “
Fruit flies modulate passive wing pitching to generate in-flight turns
,”
Phys. Rev. Lett.
104
,
148101
(
2010
).
29.
H.
Wan
,
H.
Dong
, and
G. P.
Huang
, “
Hovering hinge-connected flapping plate with passive deflection
,”
AIAA J.
50
,
2020
(
2012
).
30.
C.
Li
,
H.
Dong
, and
B.
Cheng
, “
Effects of aspect ratio and angle of attack on tip vortex structures and aerodynamic performance for rotating flat plates
,” AIAA Paper No. 2017-3645,
2017
.
31.
H.
Wan
,
H.
Dong
,
C.
Li
, and
Z.
Liang
, “
Vortex formation and aerodynamic force of low aspect-ratio plate in translation and rotation
,” AIAA Paper No. 2012-3278,
2012
.
32.
C.
Li
,
H.
Dong
, and
B.
Cheng
, “
Tip vortices formation and evolution of rotating wings at low Reynolds numbers
,”
Phys. Fluids
32
,
021905
(
2020
).
33.
J.
Wang
,
C.
Li
,
R.
Zhu
,
G.
Liu
, and
H.
Dong
, “
Wake structure and aerodynamic performance of passively pitching revolving plates
,” AIAA Paper No. 2019-1376,
2019
.
34.
C.
Li
and
H.
Dong
, “
Three-dimensional wake topology and propulsive performance of low-aspect-ratio pitching-rolling plates
,”
Phys. Fluids
28
,
071901
(
2016
).
35.
C.
Li
,
H.
Dong
, and
G.
Liu
, “
Effects of a dynamic trailing-edge flap on the aerodynamic performance and flow structures in hovering flight
,”
J. Fluid Struct.
58
,
49
(
2015
).
36.
J.
Wang
,
C.
Li
,
Y.
Ren
, and
H.
Dong
, “
Effects of surface morphing on the wake structure and performance of flapping plates
,” AIAA Paper No. 2017-3643,
2017
.
37.
C.
Li
and
H.
Dong
, “
Quantification and analysis of propulsive wake topologies in finite aspect-ratio pitching-rolling plates
,” AIAA Paper No. 2016-4339,
2016
.
38.
M.
Xu
,
M.
Wei
,
C.
Li
, and
H.
Dong
, “
Adjoint-based optimization for thrust performance of three-dimensional pitching–rolling plate
,”
AIAA J.
57
,
3716
(
2019
).
39.
C.
Li
and
H.
Dong
, “
Wing kinematics measurement and aerodynamics of a dragonfly in turning flight
,”
Bioinspiration Biomimetics
12
,
026001
(
2017
).
40.
H.
Dong
,
A. T.
Bode-Oke
, and
C.
Li
,
Learning from Nature: Unsteady Flow Physics in Bioinspired Flapping Flight
(
InTech
,
2018
).
41.
S.
Lionetti
,
T. L.
Hedrick
, and
C.
Li
, “
Numerical investigation of olfactory performance in upwind surging hawkmoth flight
,” AIAA Paper No. 2023-4242,
2023
.
42.
Z.
Lou
and
C.
Li
, “
Unsteady aerodynamics and wake structures of butterfly in forward flight
,” AIAA Paper No. 2023-4241,
2023
.
43.
R.
Mittal
,
H.
Dong
,
M.
Bozkurttas
,
F.
Najjar
,
A.
Vargas
, and
A.
Von Loebbecke
, “
A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
,”
J. Comput. Phys.
227
,
4825
(
2008
).
44.
S.
Lionetti
,
T. L.
Hedrick
, and
C.
Li
, “
Aerodynamic explanation of flight speed limits in hawkmoth-like flapping-wing insects
,”
Phys. Rev. Fluids
7
,
093104
(
2022
).
45.
Y.
Liu
,
A. D.
Lozano
,
T. L.
Hedrick
, and
C.
Li
, “
Comparison of experimental and numerical studies on the flow structures of hovering hawkmoths
,”
J. Fluid Struct.
107
,
103405
(
2021
).
46.
C.
Lee
,
Z.
Su
,
H.
Zhong
,
S.
Chen
,
M.
Zhou
, and
J.
Wu
, “
Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral
,”
J. Fluid Mech.
732
,
77
(
2013
).
47.
A. J.
Bergou
,
S.
Xu
, and
Z. J.
Wang
, “
Passive wing pitch reversal in insect flight
,”
J. Fluid Mech.
591
,
321
(
2007
).
48.
M.
Lei
and
C.
Li
, “
The aerodynamic performance of passive wing pitch in hovering flight
,”
Phys. Fluids
32
,
051902
(
2020
).
49.
M.
Lei
and
C.
Li
, “
A balance between odor intensity and odor perception range in odor-guided flapping flight
,” in
Proceedings of the Fluids Engineering Division Summer Meeting
,
2022
, Paper No. FEDSM 2022-85840.
50.
D.
Ishihara
,
Y.
Yamashita
,
T.
Horie
,
S.
Yoshida
, and
T.
Niho
, “
Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing
,”
J. Exp. Biol.
212
,
3882
(
2009
).
51.
C.
Li
,
J.
Wang
,
G.
Liu
,
X.
Deng
, and
H.
Dong
, “
Passive pitching mechanism of three-dimensional flapping wings in hovering flight
,” in
Proceedings of the ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference
,
2019
, Paper No. AJKFluids 2019-4639.
52.
M.
Lei
,
J. P.
Crimaldi
, and
C.
Li
, “
Navigation in odor plumes: How do the flapping kinematics modulate the odor landscape?
,” AIAA Paper No. 2021–2817,
2021
.
53.
M.
Lei
and
C.
Li
, “
Effects of wing kinematics on modulating odor plume structures in the odor tracking flight of fruit flies
,” in
Proceedings of the Fluids Engineering Division Summer Meeting
,
2021
, Paper No. FEDSM 2021-61832.
54.
X.
Meng
,
Y.
Liu
, and
M.
Sun
, “
Aerodynamics of ascending flight in fruit flies
,”
J. Bionic Eng.
14
,
75
(
2017
).
55.
S. N.
Fry
,
R.
Sayaman
, and
M. H.
Dickinson
, “
The aerodynamics of hovering flight in Drosophila
,”
J. Exp. Biol.
208
,
2303
(
2005
).
You do not currently have access to this content.