Many studies on internal tides (ITs) are conducted through numerical simulations. One major challenge involves the large discrepancies in baroclinic energetics in regional seas, such as the Luzon Strait (LS). These discrepancies may partially be related to the variation in eddy viscosity selections. Evident increase in eddy viscosities can affect the baroclinic energy balances and reduce simulation error in the LS. Finally, horizontal mixing parameterization schemes are found to be significant in improving the performance of regional IT modeling. The finding highlights the significance of eddy viscosity, which may make contributions to improve regional IT estimations.
REFERENCES
1.
J. D.
Nash
,
E.
Kunze
,
C. M.
Lee
, and
T.
Sanford
, “
Structure of the baroclinic tide generated at Kaena Ridge, Hawaii
,” J. Phys. Oceanogr.
36
, 1123
–1135
(2006
).2.
Z.
Xu
,
B.
Yin
,
Y.
Hou
, and
A. K.
Liu
, “
Seasonal variability and north–south asymmetry of internal tides in the deep basin west of the Luzon Strait
,” J. Mar. Syst.
134
, 101
–112
(2014
).3.
M. G. G.
Foreman
,
G.
Sutherland
, and
P. F.
Cummins
, “
M2 tidal dissipation around Vancouver Island: An inverse approach
,” Cont. Shelf Res.
24
, 2167
–2185
(2004
).4.
G. S.
Carter
,
M. C.
Gregg
, and
M. A.
Merrifield
, “
Flow and mixing around a small seamount on Kaena Ridge, Hawaii
,” J. Phys. Oceanogr.
36
, 1036
–1052
(2006
).5.
J.
Tian
,
Q.
Yang
, and
W.
Zhao
, “
Enhanced diapycnal mixing in the South China Sea
,” J. Phys. Oceanogr.
39
, 3191
(2010
).6.
Z.
Zhao
, “
Internal tide radiation from the Luzon Strait
,” J. Geophys. Res.: Oceans
119
, 5434
–5448
, https://doi.org/10.1002/2014JC010014 (2014
).7.
S.
Peng
,
J.
Liao
,
X.
Wang
,
Z.
Liu
,
Y.
Liu
,
Y.
Zhu
et al, “
Energetics-based estimation of the diapycnal mixing induced by internal tides in the Andaman Sea
,” J. Geophys. Res.: Oceans
126
, e2020JC016521
, https://doi.org/10.1029/2020JC016521 (2021
).8.
M. H.
Alford
,
J. A.
Mackinnon
,
J. D.
Nash
et al, “
Energy flux and dissipation in Luzon Strait: Two tales of two ridges
,” J. Phys. Oceanogr.
41
, 2211
–2222
(2011
).9.
X.
Wang
,
S.
Peng
,
Z.
Liu
et al, “
Tidal mixing in the South China Sea: An estimate based on the internal tide energetics
,” J. Phys. Oceanogr.
46
, 107
–124
(2016
).10.
S. M.
Kelly
and
P. F. J.
Lermusiaux
, “
Internal-tide interactions with the Gulf Stream and Middle Atlantic Bight shelfbreak front
,” J. Geophys. Res.: Oceans
121
, 6271
–6294
, https://doi.org/10.1002/2016JC011639 (2016
).11.
Z.
Guo
,
S.
Wang
,
A.
Cao
et al, “
Refraction of the M2 internal tides by mesoscale eddies in the South China Sea
,” Deep Sea Res., Part I
192
, 103946
(2023
).12.
Y.
He
and
K. G.
Lamb
, “
Mode-one internal tides propagating across a geostrophic current
,” Phys. Fluids
33
, 096606
(2021
).13.
L.
Bordois
,
F.
Auclair
,
A.
Paci
,
Y.
Dossmann
,
T.
Gerkema
, and
C.
Nguyen
, “
Tidal energy redistribution among vertical modes in a fluid with a mid-depth pycnocline
,” Phys. Fluids
28
, 101701
(2016
).14.
P.
Song
and
X.
Chen
, “
Investigation of the internal tides in the northwest Pacific ocean considering the background circulation and stratification
,” J. Phys. Oceanogr.
50
, 3165
–3188
(2020
).15.
M.
Li
,
Y.
Hou
,
Y.
Li
et al, “
Energetics and temporal variability of internal tides in Luzon Strait: A nonhydrostatic numerical simulation
,” Chin. J. Oceanol. Limnol.
30
, 852
–867
(2012
).16.
M. C.
Buijsman
,
J.
Klymak
,
S.
Legg
et al, “
Three-dimensional double-ridge internal tide resonance in Luzon Strait
,” J. Phys. Oceanogr.
44
, 850
–869
(2014
).17.
Z.
Xu
,
K.
Liu
,
B.
Yin
,
Z.
Zhao
,
Y.
Wang
, and
Q.
Li
, “
Long-range propagation and associated variability of internal tides in the South China Sea
,” J. Geophys. Res.: Oceans
121
, 8268
, https://doi.org/10.1002/2016JC012105 (2016
).18.
S.
Wang
,
A.
Cao
,
Q.
Li
, and
X.
Chen
, “
Reflection of K1 internal tides at the continental slope in the northern South China Sea
,” J. Geophys. Res.: Oceans
126
, e2021JC017260
, https://doi.org/10.1029/2021JC017260 (2021
).19.
G. D.
Egbert
and
S. Y.
Erofeeva
, “
Efficient inverse modeling of barotropic ocean tides
,” J. Atmos. Oceanic Technol.
19
, 183
–204
(2002
).20.
C.
Miao
,
H.
Chen
, and
X.
Lv
, “
An isopycnic-coordinate internal tide model and its application to the South China Sea
,” Chin. J. Oceanol. Limnol.
29
, 1339
–1356
(2011
).21.
W. G.
Large
,
J. C.
McWilliams
, and
S. C.
Doney
, “
Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization
,” Rev. Geophys.
32
, 363
–403
, https://doi.org/10.1029/94RG01872 (1994
).22.
C. E.
Leith
, “
Diffusion approximation for two-dimensional turbulence
,” Phys. Fluids
11
, 671
–672
(1968
).23.
C. E.
Leith
, “
Predictability of turbulent flows
,” J. Atmos. Sci.
29
, 1041
–1058
(1972
).24.
Y.
Yoshikawa
and
T.
Endoh
, “
Estimating the eddy viscosity profile from velocity spirals in the Ekman boundary layer
,” J. Atmos. Oceanic Technol.
32
, 793
(2015
).25.
S.
Zhang
,
Y.
Yuan
, and
Q.
Zheng
, “
Modeling of the eddy viscosity by breaking waves
,” Acta Oceanol. Sin.
26
, 116
–123
(2007
).26.
M. C.
Buijsman
,
S.
Legg
, and
J.
Klymak
, “
Double-ridge internal tide interference and its effect on dissipation in Luzon Strait
,” J. Phys. Oceanogr.
42
, 1337
–1356
(2012
).27.
D.
Drikakis
,
M.
Hahn
,
A.
Mosedale
, and
B.
Thornber
, “
Large eddy simulation using high resolution and high order methods
,” Philos. Trans. R. Soc. A
367
, 2985
–2997
(2009
).28.
K.
Ritos
,
I. W.
Kokkinakis
,
D.
Drikakis
, and
S. M.
Spottswood
, “
Implicit large eddy simulation of acoustic loading in supersonic turbulent boundary layers
,” Phys. Fluids
29
, 046101
(2017
).29.
D.
Drikakis
,
K.
Ritos
,
S. M.
Spottswood
, and
Z. B.
Riley
, “
Flow transition to turbulence and induced acoustics at Mach 6
,” Phys. Fluids
33
, 076112
(2021
).30.
C.
Zhang
,
C.
Gao
,
C.
Yu
,
X.
Xu
,
Z.
Fan
, and
P.
Wang
, “
Numerical study of the high-intensity heat conduction effect on turbulence induced by the ablative Rayleigh–Taylor instability
,” Phys. Fluids
35
, 054106
(2023
).31.
G.
Cao
,
W.
Zhao
, and
S.
Chen
, “
Quantitative analysis on implicit large eddy simulation
,” Phys. Fluids
34
, 105103
(2022
).32.
A.
Goodwillie
,
M.
Carron
,
A.
Goodwillie
et al. (2008
). “USER GUIDE TO THE GEBCO ONE MINUTE GRID,” GEBCO. https://www.gebco.net/data_and_products/historical_data_sets/#gebco_one/33.
M. R.
Carnes
(2009). “Description and Evaluation of GDEM-V.3,” GDEMv3
. https://www.usgodae.org/cgi-bin/datalist.pl?dset=navo_climate_gdem&summary=Go/34.
G. D.
Egbert
and
S. Y.
Erofeeva
(2021
). OSU Tidal Inversion Software OTIS
. https://www.tpxo.net/otis© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.