In recent years, there has been a growing interest in low-Reynolds-number, unsteady flight applications, leading to renewed scrutiny of the Kutta condition. As an alternative, various methods have been proposed, including the combination of potential flow with the triple-deck boundary layer theory to introduce a viscous correction for Theodorsen's unsteady lift. In this research article, we present a dynamical system approach for the total circulatory unsteady lift generation of a pitching airfoil. The system's input is the pitching angle, and the output is the total circulatory lift. By employing the triple-deck boundary layer theory instead of the Kutta condition, a new nonlinearity in the system emerges, necessitating further investigation to understand its impact on the unsteady lift model. To achieve this, we utilize the describing function method to represent the frequency response of the total circulatory lift. Our analysis focuses on a pitching flat plate about the mid-chord point. The results demonstrate that there is an additional phase lag due to viscous effects, which increase as the reduced frequency increases, the Reynolds number decreases, and/or the pitching amplitude increases.

1.
L.
Prandtl
, “
Über die entstehung von wirbeln in der idealen flüssigkeit, mit anwendung auf die tragflügeltheorie und andere aufgaben
,” in
Vorträge Aus Dem Gebiete Der Hydro-Und Aerodynamik
(
Innsbruck
,
1922
), pp.
18
33
(1924).
2.
W.
Birnbaum
, “
Der Schlagflugelpropeller und die kleinen Schwingungen elastisch befestigter Tragfluegel
,”
Z. Flugtech. Motorluftschiffahrt
15
,
128
134
(
1924
).
3.
W.
Birnbaum
and
W.
Ackermann
, “
Die tragende Wirbelfläche als Hilfsmittel zur Behandlung des ebenen Problems der Tragflügeltheorie
,”
Z. Angew. Math. Mech.
3
(
4
),
290
297
(
1923
).
4.
H.
Glauert
,
The Elements of Aerofoil and Airscrew Theory
(
Cambridge University Press
,
1926
).
5.
H.
Multhopp
,
Methods for Calculating the Lift Distribution of Wings (Subsonic Lifting-Surface Theory)
(
Aeronautical Research Council
,
1950
).
6.
E.
Truckenbrodt
, “
Tragflächentheorie bei inkompressibler Strömung
,”
Jahrbuch
1953
,
40
65
.
7.
H.
Wagner
, “
Uber die Entstehung des dynamischen Auftriebs von Tragflugeln
,”
Z. Angew. Math. Mech.
5
,
17
35
(
1925
).
8.
T.
Theodorsen
, “
General theory of aerodynamic instability and the mechanism of flutter
,”
NACA Technical Report No. 496
,
1935
.
9.
T.
Von Karman
and
W. R.
Sears
, “
Airfoil theory for non-uniform motion
,”
J. Aeronaut. Sci.
5
(
10
),
379
390
(
1938
).
10.
Y.
Yongliang
,
T.
Binggang
, and
M.
Huiyang
, “
An analytic approach to theoretical modeling of highly unsteady viscous flow excited by wing flapping in small insects
,”
Acta Mech. Sin.
19
(
6
),
508
516
(
2003
).
11.
D. I.
Pullin
and
Z.
Wang
, “
Unsteady forces on an accelerating plate and application to hovering insect flight
,”
J. Fluid Mech.
509
,
1
21
(
2004
).
12.
S.
Michelin
and
S. G. L.
Smith
, “
An unsteady point vortex method for coupled fluid–solid problems
,”
Theor. Comput. Fluid Dyn.
23
(
2
),
127
153
(
2009
).
13.
K.
Ramesh
,
A.
Gopalarathnam
,
J. R.
Edwards
,
M. V.
Ol
, and
K.
Granlund
, “
An unsteady airfoil theory applied to pitching motions validated against experiment and computation
,”
Theor. Comput. Fluid Dyn.
27
,
843
864
(
2013
).
14.
K.
Ramesh
,
A.
Gopalarathnam
,
K.
Granlund
,
M. V.
Ol
, and
J. R.
Edwards
, “
Discretevortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding
,”
J. Fluid Mech.
751
,
500
538
(
2014
).
15.
H.
Taha
,
M. R.
Hajj
, and
P. S.
Beran
, “
State space representation of the unsteady aerodynamics of flapping flight
,”
Aerosp. Sci. Technol.
34
,
1
11
(
2014
).
16.
Z.
Yan
,
H.
Taha
, and
M. R.
Hajj
, “
Geometrically-exact unsteady model for airfoils undergoing large amplitude maneuvers
,”
Aerosp. Sci. Technol.
39
,
293
306
(
2014
).
17.
M. Y.
Zakaria
,
H.
Taha
, and
M. R.
Hajj
, “
Measurement and modeling of lift enhancement on plunging airfoils: A frequency response approach
,”
J. Fluids Struct.
69
,
187
208
(
2017
).
18.
X.
Xia
and
K.
Mohseni
, “
Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil
,”
J. Fluid Mech.
830
,
439
478
(
2017
).
19.
A. A.
Hussein
,
H.
Taha
,
S.
Ragab
, and
M. R.
Hajj
, “
A variational approach for the dynamics of unsteady point vortices
,”
Aerosp. Sci. Technol.
78
,
559
568
(
2018
).
20.
D. G.
Crighton
, “
The Kutta condition in unsteady flow
,”
Annu. Rev. Fluid Mech.
17
(
1
),
411
445
(
1985
).
21.
O. K. G.
Tietjens
and
L.
Prandtl
, “
Applied Hydro- and Aeromechanics: Based on Lectures of L. Prandtl. Courier Corporation
,” Based on Lectures of L. Prandtl (
Courier Corporation
,
1934
).
22.
D. S.
Woolston
and
G. E.
Castile
, “
Some effects of variations in several parameters including fluid density on the flutter speed of light uniform cantilever wings
,”
NACA Technical Report No. 2558
,
1951
.
23.
N.
Rott
and
M. B. T.
George
, “
An approach to the flutter problem in real fluids
,”
Technical Report No. 509
,
1955
.
24.
H. N.
Abramson
and
H.-H.
Chu
, “
A discussion of the flutter of submerged hydrofoils
,”
J. Ship Res.
3
(
2
),
5
13
(
1959
).
25.
E.-H.
Chu
and
H. N.
Abramson
, “
An alternative formulation of the problem of flutter in real fluids
,”
J. Aerosp. Sci.
26
(
10
),
683
684
(
1959
).
26.
H. N.
Abramson
,
W.-H.
Chu
, and
J. T.
Irick
, “
Hydroelasticity with special reference to hydrofoil craft
,” Technical Report No. 2557,
Naval Ship Research and Development Center, Hydromechanics Lab
,
1967
.
27.
C. J.
Henry
, “
Hydrofoil flutter phenomenon and airfoil flutter theory
,” Technical Report No. 856,
Davidson Laboratory
,
1961
.
28.
W.-H.
Chu
, “
An aerodynamic analysis for flutter in Oseen-type viscous flow
,”
J. Aerosp. Sci.
29
(
7
),
781
789
(
1962
).
29.
S. F.
Shen
and
P.
Crimi
, “
The theory for an oscillating thin airfoil as derived from the Oseen equations
,”
J. Fluid Mech.
23
(
3
),
585
609
(
1965
).
30.
S. A.
Orszag
and
S. C.
Crow
, “
Instability of a vortex sheet leaving a semi-infinite plate
,”
Stud. Appl. Math.
49
(
2
),
167
181
(
1970
).
31.
B. C.
Basu
and
G. J.
Hancock
, “
The unsteady motion of a two- dimensional aerofoil in incompressible inviscid flow
,”
J. Fluid Mech.
87
(
1
),
159
178
(
1978
).
32.
P. G.
Daniels
, “
On the unsteady Kutta condition
,”
Q. J. Mech. Appl. Math.
31
(
1
),
49
75
(
1978
).
33.
B.
Satyanarayana
and
S.
Davis
, “
Experimental studies of unsteady trailing-edge conditions
,”
AIAA J.
16
(
2
),
125
129
(
1978
).
34.
R. L.
Bass
,
J. E.
Johnson
, and
J. F.
Unruh
, “
Correlation of lift and boundary-layer activity on an oscillating lifting surface
,”
AIAA J.
20
(
8
),
1051
1056
(
1982
).
35.
S. A.
Ansari
,
R.
Zbikowski
, and
K.
Knowles
, “
Non-linear unsteady aerodynamic model for insect-like flapping wings in the Hover. Part 2: Implementation and validation
,”
J. Aerosp. Eng.
220
(
3
),
169
186
(
2006
).
36.
C. W.
Pitt Ford
and
H.
Babinsky
, “
Lift and the leading-edge vortex
,”
J. Fluid Mech.
720
,
280
313
(
2013
).
37.
M. S.
Hemati
,
J. D.
Eldredge
, and
J. L.
Speyer
, “
Improving vortex models via optimal control theory
,”
J. Fluids Struct.
49
,
91
111
(
2014
).
38.
H.
Taha
and
A.
Rezaei
, “
Viscous extension of potential-flow unsteady aerodynamics: The lift frequency response problem
,”
J. Fluid Mech.
868
,
141
175
(
2019
).
39.
W.
Zhu
,
M. H.
McCrink
,
J. P.
Bons
, and
J. W.
Gregory
, “
The unsteady Kutta condition on an airfoil in a surging flow
,”
J. Fluid Mech.
893
,
R2
(
2020
).
40.
C.
Gonzalez
and
H. E.
Taha
, “
A variational theory of lift
,”
J. Fluid Mech.
941
,
A58
(
2022
).
41.
H. E.
Taha
and
C.
Gonzalez
, “
Refining Kutta's flow over a flat plate: Necessary conditions for lift
,”
AIAA J.
61
(
5
),
2060
(
2023
).
42.
H. E.
Taha
and
C.
Gonzalez
, “
What does nature minimize in every incompressible flow?
,” arXiv:2112.12261 (
2022
).
43.
H.
Taha
and
A.
Rezaei
, in
AIAA Aerospace Sciences Meeting, 2018
(
American Institute of Aeronautics and Astronautics Inc, AIAA
,
2018
).
44.
S. N.
Brown
and
P. G.
Daniels
, “
On the viscous flow about the trailing edge of a rapidly oscillating plate
,”
J. Fluid Mech.
67
(
04
),
743
761
(
1975
).
45.
S. N.
Brown
and
H. K.
Cheng
, “
Correlated unsteady and steady laminar trailing-edge flows
,”
J. Fluid Mech.
108
,
171
183
(
1981
).
46.
A.
Robinson
and
J. A.
Laurmann
,
Wing Theory
(
Cambridge University Press
,
New York
,
1956
).
47.
L.
Prandtl
, “Über Flüßigkeitsbewegung bei sehr kleiner Reibung,” Verhandlungen des III. Internationalen Mathematiker-Kongresses Heidelberg (1904), pp.
575
584
.
48.
A. F.
Messiter
, “
Boundary-layer flow near the trailing edge of a flat plate
,”
SIAM J. Appl. Math.
18
(
1
),
241
257
(
1970
).
49.
H.
Blasius
,
Grenzschichten in Flüssigkeiten mit Kleiner Reibung
(
Druck von BG Teubner
,
1908
).
50.
S.
Goldstein
, “
Concerning some solutions of the boundary layer equations in hydrodynamics
,”
Math. Proc. Camb. Philos. Soc.
26
(
1
),
1
30
(
1930
).
51.
K.
Stewartson
, “
On the flow near the trailing edge of a flat plate
,”
Proc. R. Soc. London, Ser. A
306
(
1486
),
275
290
(
1968
).
52.
R.
Chow
and
R. E.
Melnik
,
The 5th International Conference on Numerical Methods in Fluid Dynamics
(
Springer
,
1976
), pp.
135
144
.
53.
N. M.
Krylov
and
N. N.
Bogoliubov
,
Introduction to Non-Linear Mechanics
, AM-II (
Princeton University Press
,
1943
).
54.
J.-J. E.
Slotine
and
W.
Li
,
Applied Nonlinear Control
(
Prentice Hall
,
1991
).
55.
A. H.
Nayfeh
and
D. T.
Mook
,
Nonlinear Oscillations
(
John Wiley & Sons, Inc.
,
1995
).
56.
A. H.
Nayfeh
and
B.
Balachandran
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental
(
John Wiley & Sons, Inc.
,
2008
).
57.
H.
Schlichting
and
E.
Truckenbrodt
,
Aerodynamics of the Airplane
(
McGraw-Hill
,
1979
).
58.
H. E.
Taha
and
A. S.
Rezaei
, “
On the high-frequency response of unsteady lift and circulation: A dynamical systems perspective
,”
J. Fluids Struct.
93
,
102868
(
2020
).
59.
R. L.
Bisplinghoff
,
H.
Ashley
, and
R. L.
Halfman
,
Aeroelasticity
(
Dover Publications
,
1996
).
60.
H. E.
Taha
and
A. S.
Rezaei
, “
State-space modeling of viscous unsteady aerodynamic loads
,”
AIAA J.
60
(
4
),
2251
2265
(
2022
).
61.
J. C.
Doyle
,
B. A.
Francis
, and
A. R.
Tannenbaum
,
Feedback Control Theory
(
Maxwell Macmillan
,
New York
,
1992
).
62.
E.
Lavretsky
and
K. A.
Wise
,
Robust and Adaptive Control with Aerospace Applications
(
Springer-Verlag
,
London
,
2013
), pp.
161
176
.
You do not currently have access to this content.