Nowadays, the vast majority of coastal oil spill simulation models are based on Lagrangian methods focused on particle tracking algorithms to represent the oil slick fate. In this work, a fully Eulerian numerical model for the simulation of such environmentally significant disaster is implemented by means of a two-dimensional two-layer shallow water model. A very thin oil layer over a thicker water layer is considered in order to neglect the pressure term that the oil layer exerts over the water. Friction terms between layers are responsible for the layers coupling so that the oil layer flows over a moving water volume. To complete this dynamic model, the temperature transport and evolution under heat exchange for the oil upper layer is considered and the weathering process of evaporation is included. The numerical solution adopted is based on a finite volume upwind scheme with a Roe solver for both oil and water layers. Special care has been taken on the numerical treatment of the two-layer wet-dry boundaries (oil–water–land) and friction terms, since the objective of the model is to compute the oil slick front advancing near the coast.

1.
See https://www.itopf.org/knowledge-resources/data-statistics/statistics/ for “
Oil tanker spill statistics (
2022
),” accessed June 27, 2023.
2.
I. T. O. P. Federation
, “
Use of booms in oil pollution response
,” Technical Information Papers - ITOPF (
2014
), Vol.
3
, pp.
1
12
.
3.
I. T. O. P. Federation
, “
Aerial observation of marine oil spills
,” Technical Information Papers - ITOPF (
2014
), Vol.
1
, pp.
1
12
.
4.
J.
Reed
,
M.
O
,
P. J.
Brandvik
,
P.
Daling
,
A.
Lewis
,
R.
Fiocco
,
D.
Mackay
, and
R.
Prentki
, “
Oil spill modeling towards the close of the 20th century: Overview of the state of the art
,”
Spill Sci. Technol. Bull.
5
(
1
),
3
16
(
1999
).
5.
P.
Tkalich
, “
A CFD solution of oil spill problems
,”
Environ. Modell. Softw.
21
,
271
282
(
2006
).
6.
D. P.
Hoult
, “
Oil spreading on the sea
,”
Annu. Rev. Fluid Mech.
4
,
341
368
(
1972
).
7.
P.
Keramea
,
K.
Spanoudaki
,
G.
Zodiatis
,
G.
Gikas
, and
G.
Sylaios
, “
Oil spill modeling: A critical review on current trends, perspectives, and challenges
,”
J. Mar. Sci. Eng.
9
(
2
),
181
(
2021
).
8.
G.
Zodiatis
,
R.
Lardner
,
T.
Alves
,
Y.
Krestenitis
,
L.
Perivoliotis
,
S.
Sofianos
, and
K.
Spanoudaki
, “
Oil spill forecasting (prediction)
,”
J. Mar. Res.
75
,
923
953
(
2017
).
9.
M. L.
Spaulding
, “
State of art review and future directions in oil spill modeling
,”
Mar. Pollut. Bull.
115
,
7
19
(
2017
).
10.
C. B.
Vreugdenhil
,
Numerical Methods for Shallow-Water Flow
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
1994
).
11.
V.
Casulli
and
G. S.
Stelling
, “
Numerical simulations of 3D quasi-hydrostatic free-surface flows
,”
J. Hydraul. Eng.
124
,
678
686
(
1998
).
12.
V.
Casulli
and
P.
Zanolli
, “
Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems
,”
Math. Comput. Modell.
36
,
1131
1149
(
2002
).
13.
M.
Reed
and
C. A. O.
Turner
, “
The role of wind and emulsification in modelling oil spill and surface drifter trajectories
,”
Spill Sci. Technol. Bull.
1
(
2
),
143
157
(
1994
).
14.
C.
Kuang
,
J.
Chen
,
J.
Wang
,
R.
Qin
,
J.
Fan
, and
Q.
Zou
, “
Effect of wind-wave-current interaction on oil spill in the Yangtze river estuary
,”
J. Mar. Sci. Eng.
11
(
3
),
494
(
2023
).
15.
I.
Echeverribar
,
S.
Martínez-Aranda
,
J.
Fernández-Pato
, and
P.
García-Navarro
, “
A GPU-based 2D viscous flow model with variable density and heat exchange
,”
Adv. Eng. Softw.
175
,
103340
(
2023
).
16.
M.
Fingas
,
Oil and Petroleum Evaporation
(
John Wiley & Sons, Ltd
,
2014
), Chap. 7, pp.
205
223
.
17.
M. F.
Fingas
, “
Studies on the evaporation of crude oil and petroleum products: I. The relationship between evaporation rate and time
,”
J. Hazard. Mater.
56
,
227
236
(
1997
).
18.
B.
Ivorra
,
S.
Gomez
,
J.
Carrera
, and
A. M.
Ramos
, “
A compositional Eulerian approach for modeling oil spills in the sea
,”
Ocean Eng.
242
,
110096
(
2021
).
19.
S.
Martínez-Aranda
,
A.
Ramos-Pérez
, and
P.
García-Navarro
, “
A 1d shallow-flow model for two-layer flows based on force scheme with wet-dry treatment
,”
J. Hydroinf.
22
(
5
),
1015
1037
(
2020
).
20.
J.
Murillo
,
S.
Martínez-Aranda
,
A.
Navas-Montilla
, and
P.
García-Navarro
, “
Adaptation of flux-based solvers to 2D two-layer shallow flows with variable density including numerical treatment of the loss of hyperbolicity and drying/wetting fronts
,”
J. Hydroinf.
22
(
5
),
972
1014
(
2020
).
21.
J.
Murillo
and
P.
García-Navarro
, “
Energy balance numerical schemes for shallow water equations with discontinuous topography
,”
J. Comput. Phys.
236
(
1
),
119
142
(
2013
).
22.
J.
Murillo
and
P.
García-Navarro
, “
Weak solutions for partial differential equations with source terms: Application to the shallow water equations
,”
J. Comput. Phys.
229
(
0
),
4327
4368
(
2010
).
23.
I.
Echeverribar
,
M.
Morales-Hernández
,
P.
Brufau
, and
P.
García-Navarro
, “
2D numerical simulation of unsteady flows for large scale floods prediction in real time
,”
Adv. Water Resources
134
,
103444
(
2019
).
24.
J.
Murillo
,
P.
Garcia-Navarro
,
J.
Burguete
, and
P.
Brufau
, “
The influence of source terms on stability, accuracy and conservation in two-dimensional shallow flow simulation using triangular finite volumes
,”
Int. J. Numer. Methods Fluids
54
(
5
),
543
590
(
2007
).
25.
J.
Burguete
,
P.
García-Navarro
,
J.
Murillo
, and
I.
García-Palacín
, “
Analysis of the friction term in the one-dimensional shallow-water model
,”
J. Hydraul. Eng.
133
(
9
),
1048
1063
(
2007
).
26.
J.
Burguete
,
P.
García-Navarro
, and
J.
Murillo
, “
Friction term discretization and limitation to preserve stability and conservation in the 1d shallow-water model: Application to unsteady irrigation and river flow
,”
Int. J. Numer. Methods Fluids
58
(
4
),
403
425
(
2008
).
27.
L.
Cea
and
E.
Bladé
, “
A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications
,”
Water Resources Res.
51
(
7
),
5464
5486
(
2015
).
28.
G.
Arcement
and
V.
Schneider
, “
Guide for selecting Manning's roughness coefficients for natural channels and flood plains
,” No. 2339 in U.S. Geological Survey. Water-supply paper,
1984
.
29.
V. T.
Chow
,
Open-Channel Hydraulics, McGraw-Hill Civil Engineering Series
(
McGraw-Hill
,
1959
).
30.
F.
Palmeri
,
F.
Silván
,
I.
Prieto
,
M.
Balboni
, and
I.
García-Mijangos
,
Manual de Técnicas de Ingeniería Naturalística en Ámbito Fluvial, Departamento de Ordenación Del Territorio y Medio Ambiente
(
Gobierno del País Vasco, España
,
2002
).
31.
B. W. P.
Staff
,
G.
Witheridge
, and
B. Q. C. Council
, “
Natural channel design guidelines
,” Appendix C, Technical Document, Brisbane City Council,
2000
.
32.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
, Cambridge Mathematical Library (
Cambridge University Press
,
2000
).
33.
L. M.
Jiji
,
Heat Convection
(
Springer
,
2006
).
34.
D. G.
Kröger
, “
Convection heat transfer between a horizontal surface and the natural environment
,”
R&D J.
18
(
3
),
49
54
(
2002
).
35.
M. F.
Fingas
, “
A literature review of the physics and predictive modelling of oil spill evaporation
,”
J. Hazard. Mater.
42
(
2
),
157
175
(
1995
).
36.
E.
Toro
and
P.
Garcia-Navarro
, “
Godunov-type methods for free-surface shallow flows: A review
,”
J. Hydraul. Res.
45
(
6
),
736
751
(
2007
).
37.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics
(
Springer
,
Berlin
,
1997
).
38.
J.
Murillo
and
P.
García-Navarro
, “
Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods
,”
J. Comput. Phys.
231
,
1963
2001
(
2012
).
39.
F. J.
Leveque
,
Finite Volume Methods for Hyperbolic Problems
(
Cambridge University Press
,
New York
,
2002
).
40.
J.
Mairal
,
J.
Murillo
, and
P.
García-Navarro
, “
The entropy fix in augmented Riemann solvers in presence of source terms: Application to the shallow water equations
,”
Comput. Methods Appl. Mech. Eng.
417
,
116411
(
2023
).
41.
S.
Martínez-Aranda
,
J.
Murillo
,
M.
Morales-Hernández
, and
P.
García-Navarro
, “
Novel discretization strategies for the 2D non-Newtonian resistance term in geophysical shallow flows
,”
Eng. Geol.
302
,
106625
(
2022
).
42.
C.
Swartenbroekx
,
Y.
Zech
, and
S.
Soares-Frazão
, “
Two-dimensional two-layer shallow water model for dam break flows with significant bed load transport
,”
Int. J. Numer. Methods Fluids
73
,
477
508
(
2013
).
43.
R.
LeVeque
,
Numerical Methods for Conservation Laws, Lectures in Mathematics
(
ETH Zürich
,
Birkhäuser Basel
,
1992
).
44.
M.
Morales-Hernández
,
J.
Murillo
, and
P.
García-Navarro
, “
Diffusion-dispersion numerical discretization for solute transport in 2D transient shallow-flows
,”
Environ. Fluid Mech.
19
,
1217
1234
(
2019
).
45.
I.
MacDonald
, “
Analysis and computation of steady open channel flow
,” Ph.D. thesis (
University of Reading
,
Reading, UK
,
1996
).
46.
J. R.
Shewchuk
, “
Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator
,” in
Applied Computational Geometry: Towards Geometric Engineering
, Vol.
1148
of Lecture Notes in Computer Science, edited by
M. C.
Lin
and
D.
Manocha
(
Springer-Verlag
,
1996
), pp.
203
222
, from the First ACM Workshop on Applied Computational Geometry.
47.
A.
Beji
and
J. A.
Battjes
, “
Experimental investigation of wave propagation over a bar
,”
Coastal Eng.
19
,
151
162
(
1993
).
48.
A.
Beji
and
J. A.
Battjes
, “
Numerical simulation of nonlinear wave propagation over a bar
,”
Coastal Eng.
23
,
1
16
(
1994
).
49.
M.
Dingemans
, Comparison of computations with Boussinesq-like models and laboratory measurements, Mast-G8
M.
Note, H1684. Delft Hydraulics (
1994
).
50.
C.
Escalante
,
T.
Morales de Luna
, and
M. J.
Castro
, “
Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme
,”
Appl. Math. Comput.
338
,
631
659
(
2018
).
51.
C.
Escalante
,
M.
Dumbser
, and
M. J.
Castro
, “
An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes
,”
J. Comput. Phys.
394
,
385
416
(
2019
).
52.
I.
Echeverribar
,
P.
Brufau
, and
P.
García-Navarro
, “
Extension of a roe-type Riemann solver scheme to model non-hydrostatic pressure shallow flows
,”
Appl. Math. Comput.
440
(
2
),
127642
(
2023
).
You do not currently have access to this content.