The concentration and cavitation are fundamental and physical phenomena in fluid dynamics, which can be mathematically described by delta shock waves and vacuums, respectively. In this paper, we are concerned with the Euler equations of compressible fluid flow when the state equation is governed by the extended Chaplygin gas, an important candidate for describing dark matter and dark energy. Our main objective is to apply the flux-approximation method to rigorously investigate the formation of delta shock waves and vacuums and observe the concentration and cavitation phenomena. First, the Riemann problem of the compressible fluid flow with n + 2 parameters including flux and pressure is solved. Then, two kinds of flux approximation are discussed, that is, both the flux perturbation and pressure tend to zero, or only the flux perturbation vanishes while the extended Chaplygin gas pressure partly tends to the Chaplygin gas pressure. The results indicate that different manners of flux approximation have their respective effects on the formation of delta shock waves. Finally, several numerical results are presented to confirm the theoretical analysis.

1.
S.
Earnshaw
, “
On the mathematical theory of sound
,”
Philos. Trans. R. Soc. London
150
,
1150
1154
(
1858
).
2.
S.
Klainerman
and
A.
Majda
, “
Singular limits of quasilinear hyperbolic system with large parameters and incompressible limit of compressible fluid
,”
Commun. Pure Appl. Math.
34
,
481
524
(
1981
).
3.
K.
Oelschläger
, “
On the connection between Hamiltonian many-particle systems and the hydrodynamical equation
,”
Arch. Ration. Mach. Anal.
115
,
297
310
(
1991
).
4.
K.
Oelschläger
, “
An integro-differential equation modelling a Newtonian dynamics and its scaling limit
,”
Arch. Ration. Mach. Anal.
127
,
99
134
(
1997
).
5.
R.
Moradi
,
A.
Mahyari
,
M. B.
Gerdroodbary
,
A.
Abdollahi
, and
Y.
Amini
, “
Shape effect of cavity flameholder on mixing zone of hydrogen jet at supersonic flow
,”
Int. J. Hydrogen Energy
43
(
33
),
16364
16372
(
2018
).
6.
C.
De Michele
and
G.
Coppola
, “
Asymptotically entropy-conservative and kinetic-energy preserving numerical fluxes for compressible Euler equations
,”
J. Comput. Phys.
492
,
112439
(
2023
).
7.
C.
De Michele
and
G.
Coppola
, “
Numerical treatment of the energy equation in compressible flows simulations
,”
Comput. Fluids
250
,
105709
(
2023
).
8.
Z.
Cheng
, “
Global entropy solutions to a variant of the compressible Euler equations
,”
Appl. Math. Lett.
21
,
410
415
(
2008
).
9.
R. J.
Diperna
, “
Global solutions to a class of nonlinear hyperbolic systems of equations
,”
Commun. Pure Appl. Math.
26
,
1
28
(
1973
).
10.
Y.
Lu
, “
Convergence of the viscosity method for a nonstrictly hyperbolic conservation law
,”
Commun. Math. Phys.
150
,
59
64
(
1992
).
11.
Y.
Lu
, “
Existence of global entropy solutions to a nonstrictly hyperbolic system
,”
Arch. Ration. Mech. Anal.
178
,
287
299
(
2005
).
12.
B.
Pourhassan
and
E. O.
Kahya
, “
Extended Chaplygin gas model
,”
Results Phys.
4
,
101
102
(
2014
).
13.
J.
Naji
, “
Extended Chaplygin gas equation of state with bulk and shear viscosities
,”
Astrophys. Space Sci.
350
(
1
),
333
338
(
2014
).
14.
J.
Naji
,
S.
Heydari
, and
R.
Darabi
, “
New version of viscous Chaplygin gas cosmology with varying gravitational constant
,”
Can. J. Phys.
92
(
12
),
1556
1561
(
2014
).
15.
M. R.
Setare
, “
Interacting holographic generalized Chaplygin gas model
,”
Phys. Lett. B
654
,
1
6
(
2007
).
16.
S.
Chaplygin
, “
On gas jets
,”
Sci. Mem. Moscow Univ. Math. Phys.
21
,
1
121
(
1904
).
17.
H. S.
Tsien
, “
Two dimensional subsonic flow of compressible fluids
,”
J. Aeronaut. Sci.
6
,
399
407
(
1939
).
18.
T.
vonKarman
, “
Compressibility effects in aerodynamics
,”
J. Aeronaut. Sci.
8
,
337
365
(
1941
).
19.
K. T.
Joseph
, “
A Riemann problem whose viscosity solutions contain δ-measures
,”
Asymptotic Anal.
7
,
105
120
(
1993
).
20.
X.
Ding
and
Z.
Wang
, “
Existence and uniqueness of discontinuous solutions defined by Lebesgue-Stieltjes integral
,”
Sci. China, Ser. A
39
,
807
819
(
1996
).
21.
C.
Shen
and
M.
Sun
, “
Interactions of delta shock waves for the transport equations with split delta functions
,”
J. Math. Anal. Appl.
351
(
2
),
747
755
(
2009
).
22.
R.
De la cruz
, “
Riemann problem for a 2 × 2 hyperbolic system with linear damping
,”
Acta Appl. Math.
170
(
1
),
631
647
(
2020
).
23.
R.
De la cruz
and
J.
Juajibioy
, “
Vanishing viscosity limit for Riemann solutions to a 2 × 2 hyperbolic system with linear damping
,”
Asymptotic Anal.
127
(
3
),
275
296
(
2022
).
24.
K. D.
Joseph
, “
Weak asymptotic solution of one dimensional zero pressure dynamics system in the quarter plane
,”
Z. Angew. Math. Mech.
103
(
8
),
202100483
(
2023
).
25.
H.
Cheng
,
H.
Yang
, and
Y.
Zhang
, “
Riemann problem for the Chaplygin Euler equations of compressible fluid flow
,”
Int. J. Nonlinear Sci. Numer.
11
,
985
992
(
2010
).
26.
Y.
Pang
,
Y.
Zhang
, and
Y.
Wen
, “
Delta shock wave to the compressible fluid flow with the generalized Chaplygin gas
,”
Int. J. Nonlinear Mech.
99
,
311
318
(
2018
).
27.
Y.
Zhang
,
Y.
Zhang
, and
J.
Wang
, “
Interaction of delta shock waves for the Chaplygin Euler equations of compressible fluid flow with split delta functions
,”
Math. Methods Appl. Sci.
41
,
7678
7697
(
2018
).
28.
M.
Huang
,
Y.
Wang
, and
Z.
Shao
, “
Piston problem for the generalized Chaplygin Euler equations of compressible fluid flow
,”
Chin. J. Phys.
(to be published).
29.
F.
Huang
and
Z.
Wang
, “
Well-posedness for pressureless flow
,”
Commun. Math. Phys.
222
,
117
146
(
2001
).
30.
B. L.
Keyfitz
and
H. C.
Kranzer
, “
A viscosity approximation to a system of conservation laws with no classical Riemann solution
,” in
Nonlinear Hyperbolic Problems
, Lecture Notes Mathematics Vol.
1402
(Springer Berlin Heidelberg,
1989
), pp.
185
197
.
31.
D. J.
Korchinski
, “
Solution of a Riemann problem for a 2 × 2 system of conservation laws possessing no classical weak solution
,” Ph.D.
thesis
,
Adelphi University
,
1977
.
32.
P.
LeFloch
, “
An existence and uniqueness result for two nonstrictly hyperbolic systems
,” in
Nonlinear Evolution Equations that Change Type
, IMA Volumes in Mathematics and Its Applications Vol.
27
(
Springer-Verlag
,
Berlin/New York
,
1990
), pp.
126
138
.
33.
W.
Sheng
and
T.
Zhang
, “
The Riemann problem for transportation equation in gas dynamics
,”
Mem. Am. Math. Soc.
137
(
654
),
1
77
(
1999
).
34.
D.
Tan
and
T.
Zhang
, “
Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws: I. Four-J cases, II. Initial data involving some rarefaction waves
,”
J. Differ. Equations
111
,
203
282
(
1994
).
35.
D.
Tan
,
T.
Zhang
, and
Y.
Zheng
, “
Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws
,”
J. Differ. Equations
112
(
1
),
1
32
(
1994
).
36.
H.
Yang
, “
Riemann problems for a class of coupled hyperbolic systems of conservation laws
,”
J. Differ. Equations
159
,
447
484
(
1999
).
37.
H.
Yang
and
Y.
Zhang
, “
New developments of delta shock waves and its applications in systems of conservation laws
,”
J. Differ. Equations
252
,
5951
5993
(
2012
).
38.
H.
Yang
and
Y.
Zhang
, “
Delta shock waves with Dirac delta function in both components for systems of conservation laws
,”
J. Differ. Equations
257
,
4369
4402
(
2014
).
39.
J.
Li
, “
Note on the compressible Euler equations with zero temperature
,”
Appl. Math. Lett.
14
,
519
523
(
2001
).
40.
G.
Chen
and
H.
Liu
, “
Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations
,”
SIAM J. Math. Anal.
34
,
925
938
(
2003
).
41.
G.
Chen
and
H.
Liu
, “
Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids
,”
Physica D
189
,
141
165
(
2004
).
42.
C.
Shen
and
M.
Sun
, “
Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model
,”
J. Differ. Equations
249
(
12
),
3024
3051
(
2010
).
43.
H.
Li
and
Z.
Shao
, “
Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas
,”
Commun. Pure Appl. Anal.
15
(
6
),
2373
2400
(
2016
).
44.
G.
Yin
and
W.
Sheng
, “
Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases
,”
J. Math. Anal. Appl.
355
(
2
),
594
605
(
2009
).
45.
Y.
Zhang
and
Y.
Pang
, “
Concentration and cavitation in the vanishing pressure limit of solutions to a simplified isentropic relativistic Euler equations
,”
J. Math. Fluid Mech.
23
(
1
),
8
(
2021
).
46.
H.
Yang
and
J.
Wang
, “
Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas
,”
J. Math. Anal. Appl.
413
,
800
820
(
2014
).
47.
H.
Yang
and
J.
Wang
, “
Concentration in vanishing pressure limit of solutions to the modified Chaplygin gas equations
,”
J. Math. Phys.
57
(
11
),
111504
(
2016
).
48.
M.
Tong
,
C.
Shen
, and
X.
Lin
, “
The asymptotic limits of Riemann solutions for the isentropic extended Chaplygin gas dynamic system with the vanishing pressure
,”
Boundary Value Probl.
2018
,
144
.
49.
M.
Tong
and
C.
Shen
, “
The limits of Riemann solutions for the isentropic Euler system with extended Chaplygin gas
,”
Appl. Anal.
98
(
15
),
2668
2687
(
2019
).
50.
Y.
Zhang
,
Y.
Pang
, and
J.
Wang
, “
Concentration and cavitation in the vanishing pressure limit of solutions to the generalized Chaplygin Euler equations of compressible fluid flow
,”
Eur. J. Mech. B-Fluids
78
,
252
262
(
2019
).
51.
Y.
Nie
,
J.
Hao
, and
H.
Yang
, “
Vanishing flux perturbation, pressure, and magnetic field limit in a Chaplygin magnetogasdynamics
,”
J. Math. Phys.
63
(
3
),
031504
(
2022
).
52.
Z.
Lei
and
Z.
Shao
, “
The limit behavior of Riemann solutions to the Euler equations of compressible fluid flow for the modified Chaplygin gas
,”
J. Math. Phys.
63
(
7
),
071504
(
2022
).
53.
S.
Sheng
and
Z.
Shao
, “
Concentration of mass in the pressureless limit of the Euler equations of one-dimensional compressible fluid flow
,”
Nonlinear Anal.: Real World Appl.
52
,
103039
(
2020
).
54.
Z.
Shao
, “
The Riemann problem for a traffic flow model
,”
Phys. Fluids
35
(
3
),
036104
(
2023
).
55.
W.
Jiang
,
T.
Chen
,
T.
Li
, and
Z.
Wang
, “
The transition of Riemann solutions with composite waves for the improved Aw-Rascle-Zhang model in dusty gas
,”
Phys. Fluids
35
(
6
),
066129
(
2023
).
56.
H.
Yang
and
J.
Liu
, “
Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation
,”
Sci. China Math.
58
(
11
),
2329
2346
(
2015
).
57.
H.
Yang
and
J.
Liu
, “
Concentration and cavitation in the Euler equations for nonisentropic fluids with the flux approximation
,”
Nonlinear Anal.: Theory, Methods Appl.
123–124
,
158
177
(
2015
).
58.
H.
Yang
and
Y.
Zhang
, “
Flux approximation to the isentropic relativistic Euler equations
,”
Nonlinear Anal.
133
,
200
227
(
2016
).
59.
H.
Yang
and
Y.
Zhang
, “
Pressure and flux-approximation to the isentropic relativistic Euler equations for modified Chaplygin gas
,”
J. Math. Phys.
60
(
7
),
071502
(
2019
).
60.
Y.
Zhang
and
H.
Yang
, “
Flux-approximation limits of solutions to the relativistic Euler equations for polytropic gas
,”
J. Math. Anal. Appl.
435
,
1160
1182
(
2016
).
61.
Y.
Zhang
and
Y.
Zhang
, “
Delta-shocks and vacuums in the relativistic Euler equations for isothermal fluids with the flux approximation
,”
J. Math. Phys.
60
(
1
),
011508
(
2019
).
62.
M.
Sun
, “
The limits of Riemann solutions to the simplified pressureless Euler system with flux approximation
,”
Math. Methods Appl. Sci.
41
(
12
),
4528
4548
(
2018
).
63.
S.
Liu
and
W.
Sheng
, “
The stability of the delta wave to pressureless Euler equations with viscous and flux perturbations
,”
Acta Math. Sci.
42
(
4
),
1519
1535
(
2022
).
64.
X.
Liu
and
C.
Shen
, “
Stability of delta shock solution for the simplified magnetohydrodynamics equations under the linear flux-function perturbation
,”
Acta Appl. Math.
183
(
1
),
1
(
2023
).
65.
J.
Liu
and
W.
Xiao
, “
Flux approximation to the Aw-Rascle model of traffic flow
,”
J. Math. Phys.
59
(
10
),
101508
(
2018
).
66.
Y.
Zhang
and
S.
Fan
, “
Limits of solutions to the Aw-Rascle traffic flow model with generalized Chaplygin gas by flux approximation
,”
J. Math. Phys.
64
(
5
),
051512
(
2023
).
67.
W.
Jiang
,
Y.
Zhang
,
T.
Li
, and
T.
Chen
, “
The cavitation and concentration of Riemann solutions for the isentropic Euler systems with isothermal dusty gas
,”
Nonlinear Anal.: Real World Appl.
71
,
103761
(
2023
).
68.
C. W.
Shu
, “
Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws
,”
NASA/CR-97-206253, ICASE Report No. 97–65
,
1997
.
You do not currently have access to this content.