Long hangers around the bridge tower are subjected to severe vibrations caused by the tower wakes. This study adopted an active suction/blowing control measure at the tower corners to control hanger vibrations and included four combination measures: upstream suction (US), upstream blowing (UB), downstream suction (DS), and downstream blowing (DB). The effects of control cases on the near-wake flow structures of the tower were first studied in two-dimensional RANS simulation, and the vibration behaviors of the hanger and control mechanism were further analyzed. The cases associated with UB and DS cannot effectively suppress hanger vibrations, and both lead to unfavorable upward trends in the aerodynamic coefficients of the tower. Especially for the cases associated with DS, at a specific control speed, the second-order frequency of the drag coefficient of the hanger is very close to its natural frequency, resulting in significant longitudinal vibration. The cases associated with US and DB are effective control schemes with longitudinal peak amplitudes of the hanger reduced by 94.1% and 94.5%, and lateral peak amplitudes reduced by 95.8% and 97.0%, respectively, compared with the case baseline. This is because the dominant frequency of the lift of the hanger is away from its natural frequency, and the fluctuating wind loads on the hanger are effectively suppressed. Finally, the control effect and vibration suppression mechanism for typical cases were further reproduced in three-dimensional large eddy simulations.

1.
Y. L.
Li
,
H. J.
Tang
,
Q. M.
Lin
, and
X. Z.
Chen
, “
Vortex-induced vibration of suspenders in the wake of bridge tower by numerical simulation and wind tunnel test
,”
J. Wind Eng. Ind. Aerodyn.
164
,
164
173
(
2017
).
2.
Y. F.
Ma
,
A. Y.
Peng
,
L.
Wang
,
L. Z.
Dai
, and
J. R.
Zhang
, “
Structural performance degradation of cable-stayed bridges subjected to cable damage: Model test and theoretical prediction
,”
Struct. Infrastruct. Eng.
19
(
9
),
1173
1189
(
2023
).
3.
Y. F.
Ma
,
Z. Z.
Guo
,
L.
Wang
, and
J. R.
Zhang
, “
Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage
,”
J. Struct. Eng.
146
(
7
),
04020117
(
2020
).
4.
H.
Tabatabai
and
A. B.
Mehrabi
, “
Tuned dampers and cable fillers for suppression of bridge cable vibrations
,” NCHRP-IDEA Program Project Final Report,
1999
.
5.
Z. H.
Wang
,
H.
Gao
,
B. Q.
Fan
, and
Z. Q.
Chen
, “
Inertial mass damper for vibration control of cable with sag
,”
J. Low. Freq. Noise. Vib. Active Control
39
(
3
),
749
760
(
2020
).
6.
S. Y.
Zhu
,
W. A.
Shen
, and
Y. L.
Xu
, “
Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing
,”
Eng. Struct.
34
,
198
212
(
2012
).
7.
W. N.
Shen
and
S. Y.
Zhu
, “
Harvesting energy via electromagnetic damper: Application to bridge stay cables
,”
J. Intell. Mater. Syst. Struct.
26
(
1
),
3
19
(
2015
).
8.
H. Q.
Jing
,
X. H.
He
,
Y. F.
Zou
, and
H. F.
Wang
, “
In-plane modal frequencies and mode shapes of two stay cables interconnected by uniformly distributed cross-ties
,”
J. Sound Vib.
417
(
417
),
38
55
(
2018
).
9.
X. H.
He
,
C.
Cai
,
Z. J.
Wang
,
H. Q.
Jing
, and
C. W.
Qin
, “
Experimental verification of the effectiveness of elastic cross-ties in suppressing wake-induced vibrations of staggered stay cables
,”
Eng. Struct.
167
(
167
),
151
165
(
2018
).
10.
T.
Qiu
,
Q.
Xu
,
X. Q.
Du
,
Y.
Zhao
, and
W. Q.
Lin
, “
Vortex-induced vibration of two rigidly coupled tandem square cylinders at a low Reynolds number
,”
Phys. Fluids
34
(
9
),
093605
(
2022
).
11.
H. Y.
Zhu
,
Y.
Zhao
,
T.
Qiu
,
W. Q.
Lin
,
X. Q.
Du
, and
H. T.
Dong
, “
Vortex-induced vibrations of two tandem rigidly coupled circular cylinders with streamwise, transverse and rotational degrees of freedom
,”
Phys. Fluids
35
,
023606
(
2023
).
12.
D.
Rocchi
and
A.
Zasso
, “
Vortex shedding from a circular cylinder in a smooth and wired configuration: Comparison between 3D LES simulation and experimental analysis
,”
J. Wind Eng. Aerodyn.
90
(
4
),
475
489
(
2002
).
13.
H.
Katsuchi
,
H.
Yamada
,
I.
Sakaki
, and
E.
Okado
, “
Wind-tunnel investigation of the aerodynamic performance of surface-modification cables
,”
Engineering
3
(
6
),
817
822
(
2017
).
14.
Z. Q.
Chen
,
S. Y.
Li
,
Y. C.
Deng
,
Y. Y.
Wang
,
M.
An
, and
C.
Yang
, “
New research progress in wind-induced vibration of long cable structures
,”
J. Hunan Univ.
49
(
5
),
1
8
(
2022
) (in Chinese).
15.
E.
Laursen
,
N.
Bitsch
, and
J. E.
Andersen
, “
Analysis and mitigation of large amplitude cable vibrations at the great belt east bridge
,”
IABSE Symp. Rep.
91
(
3
),
64
71
(
2006
).
16.
Z. T.
Zhang
,
X. B.
Wu
, and
Z. Q.
Chen
, “
Mechanism of hanger oscillation at suspension bridges: Buffeting-induced resonance
,”
J. Bridge Eng.
21
(
3
),
04015066
(
2016
).
17.
Y. C.
Deng
,
S. Y.
Li
, and
Z. Q.
Chen
, “
Experimental investigation on wake-induced vibrations of the hangers of suspension bridges based on three-dimensional elastic test mode
,”
Eng. Struct.
234
,
111985
(
2021
).
18.
X. G.
Hua
,
Z. Q.
Chen
,
X.
Lei
,
Q.
Wen
, and
H. W.
Niu
, “
Monitoring and control of wind-induced vibrations of hanger ropes of a suspension bridge
,”
Smart Struct. Syst.
23
(
6
),
125
141
(
2018
).
19.
M. M.
Zdravkovich
, “
Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding
,”
J. Wind Eng. Ind. Aerodyn.
7
,
145
189
(
1981
).
20.
H.
Choi
,
W. P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid. Mech.
40
(
1
),
113
139
(
2008
).
21.
E.
Maruta
,
M.
Kanda
, and
J.
Sato
, “
Effects on surface roughness for wind pressure on glass and cladding of buildings
,”
J. Wind Eng. Ind. Aerodyn.
74–76
,
651
663
(
1998
).
22.
Y. C.
Zhang
,
Y.
Qin
, and
C. G.
Wang
, “
Research on the influence of openings to static wind load of high-rise buildings
,”
J. Build Struct.
25
(
4
),
112
118
(
2004
) (in Chinese).
23.
K. T.
Tse
,
P. A.
Hitchcock
,
K. C. S.
Kwok
,
S.
Thepmongkorn
, and
C. M.
Chan
, “
Economic perspectives of aerodynamic treatments of square tall buildings
,”
J. Wind Eng. Ind. Aerodyn.
97
,
455
467
(
2009
).
24.
D. L.
Gao
,
X.
Chang
,
T.
Tursuntohti
,
H. Y.
Yu
, and
W. L.
Chen
, “
Modification of subcritical cylinder flow with an upstream rod
,”
Phys. Fluids
34
,
015107
(
2022
).
25.
W. L.
Chen
,
D. L.
Gao
,
W. Y.
Yuan
,
H.
Li
, and
H.
Hu
, “
Passive jet control of flow around a circular cylinder
,”
Exp. Fluids
56
(
11
),
201
(
2015
).
26.
C. G.
Zhang
,
Complex Wind-Induced Vibration of Hangers in the Wake of Long-Span Suspension Bridge Tower
(
Harbin Institute of Technology
,
Harbin
,
2017
) (in Chinese).
27.
W. L.
Chen
,
Y. W.
Huang
,
D. L.
Gao
,
H. C.
Meng
,
B.
Guan
, and
H.
Li
, “
Passive suction jet control of flow regime around a rectangular column with a low side ratio
,”
Exp. Therm. Fluid Sci.
109
,
109815
(
2019
).
28.
W. L.
Chen
,
Y. W.
Huang
,
C. L.
Chen
,
H. Y.
Yu
, and
D. L.
Gao
, “
Review of active control of circular cylinder flow
,”
Ocean Eng.
258
,
111840
(
2022
).
29.
Z.
Chen
,
B.
Fan
,
B.
Zhou
, and
N.
Aubry
, “
Control of vortex shedding behind a circular cylinder using electromagnetic forces
,”
Mod. Phys. Lett. B
19
,
1627
1630
(
2005
).
30.
Y.
Uikin
,
S.
Keshav
,
J.
Kim
et al, “
Development and use of localized arc filament plasma actuators for high-speed flow control
,”
J. Phys. D
40
,
685
(
2007
).
31.
L. H.
Feng
,
J. J.
Wang
, and
C.
Pan
, “
Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control
,”
Phys. Fluids
23
,
014106
(
2011
).
32.
P. T.
Tokumaru
and
P. E.
Dimotakis
, “
Rotary oscillation control of a cylinder wake
,”
J. Fluid Mech.
224
,
77
90
(
1991
).
33.
C. J.
Wu
,
L.
Wang
, and
J. Z.
Wu
, “
Suppression of the von Karman vortex street behind a circular cylinder by a travelling wave generated by a flexible surface
,”
J. Fluid Mech.
574
,
365
391
(
2007
).
34.
G. P.
Ling
and
J. W.
Fang
, “
Numerical study on the flow around a circular cylinder with surface suction or blowing using vorticity-speed method
,”
Appl. Math. Mech.
23
(9),
1089
1096
(
2002
).
35.
J.
Kim
and
H.
Choi
, “
Distributed forcing of flow over a circular cylinder
,”
Phys. Fluids
17
(
3
),
033103
(
2005
).
36.
W. L.
Chen
,
H.
Li
, and
H.
Hu
, “
An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder
,”
Exp. Fluids
55
(
4
),
1
20
(
2014
).
37.
W. L.
Chen
,
Y.
Cao
,
H.
Li
, and
H.
Hu
, “
Numerical investigation of steady suction control of flow around a circular cylinder
,”
J. Fluid. Struct.
59
,
22
36
(
2015
).
38.
H. Y.
Yu
,
Z. H.
Xu
,
W. L.
Chen
,
H.
Li
, and
D. L.
Gao
, “
Attenuation of vortex street by suction through structured porous surface
,”
Phys. Fluids
33
(
12
),
125101
(
2021
).
39.
H. Y.
Yu
,
Z. H.
Xu
,
W. L.
Chen
,
H.
Li
, and
D. L.
Gao
, “
Wake stabilization of a cylinder by secondary flow over the leeward surface
,”
Phys. Fluids
34
,
055110
(
2022
).
40.
L. M.
Ling
,
B.
Ramaswamy
,
R. D.
Cohen
, and
T. C.
Jue
, “
Numerical analysis on Strouhal frequencies in vortex shedding over square cylinders with surface suction and blowing
,”
Int. J. Numer. Methods Heat Fluid Flow
3
,
357
375
(
1993
).
41.
P.
Koutmos
,
D.
Papailiou
, and
A.
Bakrozis
, “
Experimental and computational study of square cylinder wakes with two-dimensional injection into the base flow region
,”
Eur. J. Mech. B
23
,
353
365
(
2004
).
42.
C. R.
Zheng
and
Y. C.
Zhang
, “
Computational fluid dynamics study on performance and mechanism of suction control over a high-rise building
,”
Struct. Des. Tall Spec. Build.
21
,
475
491
(
2012
).
43.
H. Y.
Yu
,
W. L.
Chen
,
Y. W.
Huang
,
H.
Meng
, and
D. L.
Gao
, “
Dynamic wake of a square cylinder controlled with steady jet positioned at the rear stagnation point
,”
Ocean Eng.
233
,
109157
(
2021
).
44.
D. L.
Gao
,
H.
Meng
,
Y. W.
Huang
,
G. B.
Chen
, and
W. L.
Chen
, “
Active flow control of the dynamic wake behind a square cylinder using combined jets at the front and rear stagnation points
,”
Phys. Fluids
33
,
047101
(
2021
).
45.
H.
Meng
,
G. B.
Chen
,
W. L.
Chen
,
H.
Li
, and
D. L.
Gao
, “
Characteristics of the forced flow past a square cylinder with steady suctions at the leading-edge corners
,”
Phys. Fluids
34
,
025119
(
2022
).
46.
H.
Sakamoto
,
H.
Haniu
, and
Y.
Kobayashi
, “
Fluctuating force acting on rectangular cylinders in uniform flow
,”
Trans. Jpn. Soc. Mech. Eng.
55
(
516
),
2310
2317
(
1989
).
47.
K.
Shimada
and
T.
Ishihara
, “
Application of a modified kε model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders
,”
J. Fluid Struct.
16
(
4
),
465
485
(
2002
).
48.
W. L.
Chen
,
Y. W.
Huang
, and
H.
Meng
, “
Wake-induced vibration of a suspender cable in the rear of a bridge tower
,”
J. Fluid Struct.
99
,
103166
(
2020
).
49.
W. L.
Chen
,
W. H.
Yang
,
F. X.
Xu
, and
C. G.
Zhang
, “
Complex wake-induced vibration of aligned hangers behind tower of long-span suspension bridge
,”
J. Fluid Struct.
92
,
102829
(
2020
).
50.
W.
Zhong
,
S. C.
Yim
, and
L.
Deng
, “
Vortex shedding patterns past a rectangular cylinder near a free surface
,”
Ocean Eng.
200
,
107049
(
2020
).
51.
P.
Hu
,
G. D.
Hu
,
Y.
Han
,
F.
Zhang
, and
Y. J.
Tang
, “
Vortex-induced force model and reliability analysis of a steel box girder with projecting slab in a cable-stayed bridge
,”
Int. J. Struct. Stab. Dyn.
22
(
13
),
2250139
(
2022
).
52.
P.
Hu
,
Y. J.
Tang
,
Y.
Han
,
C. S.
Cai
,
N. J.
Yan
, and
F.
Zhang
, “
Numerical study on self-excited forces and flow fields for a thin plate under a sinusoidal non-stationary wind condition
,”
Phys. Fluids
35
,
067128
(
2023
).
53.
H.
Nishimura
and
Y.
Taniike
, “
Fluctuating wind forces on a stationary two-dim
,” in
Proceedings of the 16th National Symposium on Wind Engineering
(
Springer
,
Tokyo, Japan
,
2000
).
54.
B. E.
Lee
, “
The effect of turbulence on the surface pressure field of a square prism
,”
J. Fluid Mech.
69
(
2
),
263
282
(
1975
).
55.
S.
Oka
and
T.
Ishihara
, “
Numerical study of aerodynamic characteristics of a square prism in a uniform flow
,”
J. Wind Eng. Ind. Aerodyn.
97
(
11/12
),
548
559
(
2009
).
56.
A.
Khalak
and
C. H. K.
Williamson
, “
Dynamics of a hydroelastic cylinder with very low mass and damping
,”
J. Fluids Struct.
10
(
5
),
455
472
(
1996
).
57.
S.
Martini
,
M.
Morgut
, and
R.
Pigazzini
, “
Numerical VIV analysis of a single elastically-mounted cylinder: Comparison between 2D and 3D URANS simulations
,”
J. Fluid Struct.
104
(
4
),
103303
(
2021
).
58.
J. H.
Bi
,
H. J.
Yu
, and
H. P.
Ren
, “
Two dimensional numerical simulation of flow over a static square cylinder and a static circular cylinder
,”
J. China Three Gorges Univ.
34
(
1
),
41
45
(
2012
) (in Chinese).
59.
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
, 8th ed. (
Springer
,
New York, USA
,
2003
).
60.
P.
Wen
and
W.
Qiu
, “
Investigation of drag crisis phenomenon using CFD methods
,”
Appl. Ocean Res.
67
,
306
321
(
2017
).
61.
G. F.
Wu
,
X. Q.
Du
, and
Y. L.
Wang
, “
LES of flow around two staggered circular cylinders at a high subcritical Reynolds number of 1.4 × 105
,”
J. Wind Eng. Ind. Aerodyn.
196
,
104044
(
2020
).
62.
Q. C.
Zhu
,
L.
Zhou
,
J. H.
Wen
,
T. T.
Liu
,
J. Z.
Zhang
,
H.
Tang
, and
H. F.
Zhang
, “
Laminar flow over a rectangular cylinder experiencing torsional flutter: Dynamic response, forces and coherence modes
,”
Phys. Fluids
35
,
093610
(
2023
).
63.
G. F.
Wu
,
W. Q.
Lin
,
X. Q.
Du
,
C. L.
Shi
, and
J. Y.
Zhu
, “
On the flip-flopping phenomenon of two side-by-side circular cylinders at a high subcritical Reynolds number of 1.4 × 105
,”
Phys. Fluids
32
,
094112
(
2020
).
64.
M. Y.
Yu
,
X. Y.
Wang
,
J. C.
Cai
,
V.
Brazhenko
,
J. B.
Tan
,
Z. S.
Xu
, and
E.
Shiju
, “
Analysis on flow-induced vibration of square cylinders with different vibration forms and the flow energy harvesting capacity
,”
Phys. Fluids
35
,
095124
(
2023
).
65.
A.
Cimarelli
,
M.
Franciolini
, and
A.
Crivellini
, “
Numerical experiments in separating and reattaching flows
,”
Phys. Fluids
32
(
9
),
095119
(
2020
).
66.
Z.
Cui
,
M.
Zhao
,
B.
Teng
, and
L.
Cheng
, “
Two-dimensional numerical study of vortex-induced vibration and galloping of square and rectangular cylinders in steady flow
,”
Ocean Eng.
106
,
189
(
2015
).
67.
E.
Guilmineau
and
P.
Queutey
, “
Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow
,”
J. Fluid Struct.
19
,
449
(
2004
).
68.
Z. Y.
Pan
,
W. C.
Cui
, and
Q. M.
Miao
, “
Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code
,”
J. Fluid Struct.
23
,
23
(
2007
).
69.
P.
Hu
,
S. L.
Wang
,
Y.
Han
,
C. S.
Cai
,
F.
Zhang
, and
N. J.
Yan
, “
Mechanism analysis on wake-induced vibration of parallel hangers near a long-span suspension bridge tower
,”
J. Wind Eng. Ind. Aerodyn.
241
,
105542
(
2023
).
You do not currently have access to this content.