Bayesian optimization based on Gaussian process regression has recently spread into a range of computational fluid dynamics problems. It still remains to be explored and developed for the complex flow problems with high dimensions and large computational cost. In this work, we present the application of multi-fidelity Bayesian optimization (MFBO) to drag reduction control of flow over a two-dimensional circular cylinder. The flow is modified by the spatially distributed tangential velocity on the cylinder surface, which is optimized by utilization of MFBO. It is shown that 50% reduction of the computational cost is obtained by using MFBO, as compared with that of single-fidelity Bayesian optimization, by involving low-fidelity simulations. The optimal tangential velocity distribution designed by MFBO is successfully applied to modify the wake of cylinder. As a result, an average drag coefficient reduction rate of 36.2% and decrease in the fluctuation amplitude of lift coefficient by 85.7% at Re = 200 are obtained. Effects of the hyper-parameters of the proposed MFBO control architecture are also examined.

1.
H.
Choi
,
W.-P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
139
(
2008
).
2.
H.
Zhu
,
T.
Tang
,
H.
Zhao
, and
Y.
Gao
, “
Control of vortex-induced vibration of a circular cylinder using a pair of air jets at low Reynolds number
,”
Phys. Fluids
31
,
043603
(
2019
).
3.
Y.
Zhang
,
Z.
Ye
,
B.
Li
,
L.
Xie
,
J.
Zou
, and
Y.
Zheng
, “
Numerical analysis of turbulence characteristics in a flat-plate flow with riblets control
,”
Adv. Aerodyn.
4
,
1
28
(
2022
).
4.
B.-Z.
Han
,
W.-X.
Huang
, and
C.-X.
Xu
, “
Deep reinforcement learning for active control of flow over a circular cylinder with rotational oscillations
,”
Int. J. Heat Fluid Flow
96
,
109008
(
2022
).
5.
Y.
Li
,
H.
Bai
, and
N.
Gao
, “
Drag of a D-shaped bluff body under small amplitude harmonic actuation
,”
Theor. Appl. Mech. Lett.
5
,
35
38
(
2015
).
6.
C.
Lee
,
J.
Kim
, and
H.
Choi
, “
Suboptimal control of turbulent channel flow for drag reduction
,”
J. Fluid Mech.
358
,
245
258
(
1998
).
7.
C.-X.
Xu
,
J.-I.
Choi
, and
H. J.
Sung
, “
Suboptimal control for drag reduction in turbulent pipe flow
,”
Fluid Dyn. Res.
30
,
217
231
(
2002
).
8.
C.
Min
and
H.
Choi
, “
Suboptimal feedback control of vortex shedding at low Reynolds numbers
,”
J. Fluid Mech.
401
,
123
156
(
1999
).
9.
J.-W.
He
,
R.
Glowinski
,
R.
Metcalfe
,
A.
Nordlander
, and
J.
Periaux
, “
Active control and drag optimization for flow past a circular cylinder
,”
J. Comput. Phys.
163
,
83
117
(
2000
).
10.
C.
Homescu
,
I.
Navon
, and
Z.
Li
, “
Suppression of vortex shedding for flow around a circular cylinder using optimal control
,”
Int. J. Numer. Methods Fluids
38
,
43
69
(
2002
).
11.
T. L. B.
Flinois
and
T.
Colonius
, “
Optimal control of circular cylinder wakes using long control horizons
,”
Phys. Fluids
27
,
087105
(
2015
).
12.
M.
Bergmann
and
L.
Cordier
, “
Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models
,”
J. Comput. Phys.
227
,
7813
7840
(
2008
).
13.
M.
Milano
and
P.
Koumoutsakos
, “
A clustering genetic algorithm for cylinder drag optimization
,”
J. Comput. Phys.
175
,
79
107
(
2002
).
14.
C.
Lee
,
J.
Kim
,
D.
Babcock
, and
R.
Goodman
, “
Application of neural networks to turbulence control for drag reduction
,”
Phys. Fluids
9
,
1740
1747
(
1997
).
15.
B.-Z.
Han
and
W.-X.
Huang
, “
Active control for drag reduction of turbulent channel flow based on convolutional neural networks
,”
Phys. Fluids
32
,
095108
(
2020
).
16.
J.
Park
and
H.
Choi
, “
Machine-learning-based feedback control for drag reduction in a turbulent channel flow
,”
J. Fluid Mech.
904
,
A24
(
2020
).
17.
N.
Gautier
,
J.-L.
Aider
,
T.
Duriez
,
B.
Noack
,
M.
Segond
, and
M.
Abel
, “
Closed-loop separation control using machine learning
,”
J. Fluid Mech.
770
,
442
457
(
2015
).
18.
V.
Parezanović
,
J. C.
Laurentie
,
C.
Fourment
,
J.
Delville
,
J.-P.
Bonnet
,
A.
Spohn
,
T. P. C.
Duriez
,
L.
Cordier
,
B. R.
Noack
,
M.
Abel
et al, “
Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control
,”
Flow, Turbul. Combust.
94
,
155
173
(
2015
).
19.
V.
Parezanović
,
L.
Cordier
,
A.
Spohn
,
T.
Duriez
,
B. R.
Noack
,
J.-P.
Bonnet
,
M.
Segond
,
M.
Abel
, and
S. L.
Brunton
, “
Frequency selection by feedback control in a turbulent shear flow
,”
J. Fluid Mech.
797
,
247
283
(
2016
).
20.
A.
Debien
,
K. A.
von Krbek
,
N.
Mazellier
,
T.
Duriez
,
L.
Cordier
,
B. R.
Noack
,
M. W.
Abel
, and
A.
Kourta
, “
Closed-loop separation control over a sharp edge ramp using genetic programming
,”
Exp. Fluids
57
,
40
(
2016
).
21.
R.
Li
,
B. R.
Noack
,
L.
Cordier
,
J.
Borée
, and
F.
Harambat
, “
Drag reduction of a car model by linear genetic programming control
,”
Exp. Fluids
58
,
103
(
2017
).
22.
F.
Ren
,
C.
Wang
, and
H.
Tang
, “
Active control of vortex-induced vibration of a circular cylinder using machine learning
,”
Phys. Fluids
31
,
093601
(
2019
).
23.
G.
Minelli
,
T.
Dong
,
B.
Noack
, and
S.
Krajnović
, “
Upstream actuation for bluff-body wake control driven by a genetically inspired optimization
,”
J. Fluid Mech.
893
,
A1
(
2020
).
24.
Y.
Li
,
W.
Cui
,
Q.
Jia
,
Q.
Li
,
Z.
Yang
,
M.
Morzyński
, and
B. R.
Noack
, “
Explorative gradient method for active drag reduction of the fluidic pinball and slanted Ahmed body
,”
J. Fluid Mech.
932
,
A7
(
2022
).
25.
T.
Simpson
,
F.
Mistree
,
J.
Korte
, and
T.
Mauery
, “
Comparison of response surface and kriging models for multidisciplinary design optimization
,” AIAA Paper No. 98-4755,
1998
.
26.
R.
Lam
,
M.
Poloczek
,
P.
Frazier
, and
K. E.
Willcox
, “
Advances in Bayesian optimization with applications in aerospace engineering
,” AIAA Paper No. 2018-1656,
2018
.
27.
R.
Priem
,
H.
Gagnon
,
I.
Chittick
,
S.
Dufresne
,
Y.
Diouane
, and
N.
Bartoli
, “
An efficient application of Bayesian optimization to an industrial MDO framework for aircraft design
,” AIAA Paper No. 2020-3152,
2020
.
28.
R.
Duvigneau
and
P.
Chandrashekar
, “
Kriging-based optimization applied to flow control: Kriging-based optimization
,”
Int. J. Numer. Methods Fluids
69
,
1701
1714
(
2012
).
29.
C.
Talnikar
,
P.
Blonigan
,
J.
Bodart
, and
Q.
Wang
, “
Parallel optimization for large eddy simulations
,” arXiv:1410.8859 (
2014
).
30.
Y.
Nabae
and
K.
Fukagata
, “
Bayesian optimization of traveling wave-like wall deformation for friction drag reduction in turbulent channel flow
,”
J. Fluid Sci. Technol.
16
,
JFST0024
(
2021
).
31.
O. A.
Mahfoze
,
A.
Moody
,
A.
Wynn
,
R. D.
Whalley
, and
S.
Laizet
, “
Reducing the skin-friction drag of a turbulent boundary-layer flow with low-amplitude wall-normal blowing within a Bayesian optimization framework
,”
Phys. Rev. Fluids
4
,
094601
(
2019
).
32.
A. B.
Blanchard
,
G. Y.
Cornejo Maceda
,
D.
Fan
,
Y.
Li
,
Y.
Zhou
,
B. R.
Noack
, and
T. P.
Sapsis
, “
Bayesian optimization for active flow control
,”
Acta Mech. Sin.
37
,
1786
1798
(
2021
).
33.
A.
Larroque
,
M.
Fosas de Pando
, and
L.
Lafuente
, “
Cylinder drag minimization through wall actuation: A Bayesian optimization approach
,”
Comput. Fluids
240
,
105370
(
2022
).
34.
R.
Lewis
and
S.
Nash
, “
A multigrid approach to the optimization of systems governed by differential equations
,” in
8th Symposium on Multidisciplinary Analysis and Optimization
,
2000
.
35.
M. C.
Kennedy
and
A.
O'Hagan
, “
Bayesian calibration of computer models
,”
J. R. Stat. Soc., Ser. B
63
,
425
464
(
2001
).
36.
L. L.
Gratiet
, “
Multi-fidelity Gaussian process regression for computer experiments
,” Ph.D. thesis (
Université Paris-Diderot-Paris VII
,
2013
).
37.
M.
Meliani
,
N.
Bartoli
,
T.
Lefebvre
,
M.-A.
Bouhlel
,
J. R. R. A.
Martins
, and
J.
Morlier
, “
Multi-fidelity efficient global optimization: Methodology and application to airfoil shape design
,” AIAA Paper No. 2019-3236,
2019
.
38.
X.
Zhang
,
F.
Xie
,
T.
Ji
,
Z.
Zhu
, and
Y.
Zheng
, “
Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization
,”
Comput. Methods Appl. Mech. Eng.
373
,
113485
(
2021
).
39.
A.
Serafino
,
B.
Obert
, and
P.
Cinnella
, “
Multi-fidelity gradient-based strategy for robust optimization in computational fluid dynamics
,”
Algorithms
13
,
248
(
2020
).
40.
H.
Zheng
,
F.
Xie
,
T.
Ji
,
Z.
Zhu
, and
Y.
Zheng
, “
Multifidelity kinematic parameter optimization of a flapping airfoil
,”
Phys. Rev. E
101
,
013107
(
2020
).
41.
P.
Poncet
,
R.
Hildebrand
,
G.-H.
Cottet
, and
P.
Koumoutsakos
, “
Spatially distributed control for optimal drag reduction of the flow past a circular cylinder
,”
J. Fluid Mech.
599
,
111
120
(
2008
).
42.
K.
Kim
,
S.-J.
Baek
, and
H. J.
Sung
, “
An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations
,”
Int. J. Numer. Methods Fluids
38
,
125
138
(
2002
).
43.
W.-X.
Huang
,
S. J.
Shin
, and
H. J.
Sung
, “
Simulation of flexible filaments in a uniform flow by the immersed boundary method
,”
J. Comput. Phys.
226
,
2206
2228
(
2007
).
44.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
45.
L.
Le Gratiet
and
J.
Garnier
, “
Recursive co-kriging model for design of computer experiments with multiple levels of fidelity
,”
Int. J. Uncertainty Quantif.
4
,
365
(
2014
).
46.
M. C.
Kennedy
and
A.
O'Hagan
, “
Predicting the output from a complex computer code when fast approximations are available
,”
Biometrika
87
,
1
13
(
2000
).
47.
M. A.
Bouhlel
,
J. T.
Hwang
,
N.
Bartoli
,
R.
Lafage
,
J.
Morlier
, and
J. R. R. A.
Martins
, “
A python surrogate modeling framework with derivatives
,”
Adv. Eng. Software
135
,
102662
(
2019
).
48.
D. R.
Jones
,
M.
Schonlau
, and
W. J.
Welch
, “
Efficient global optimization of expensive black-box functions
,”
J. Global Optim.
13
,
455
492
(
1998
).
49.
P. I.
Frazier
, “
A tutorial on Bayesian optimization
,” arXiv:1807.02811 (
2018
).
50.
M. D.
McKay
, “
Latin hypercube sampling as a tool in uncertainty analysis of computer models
,” in
Proceedings of the 24th Conference on Winter Simulation
, 1992.
51.
X.
Mao
and
E.
Pearson
, “
Drag reduction and thrust generation by tangential surface motion in flow past a cylinder
,”
Theor. Comput. Fluid Dyn.
32
,
307
323
(
2018
).
52.
B.
Rajani
,
A.
Kandasamy
, and
S.
Majumdar
, “
Numerical simulation of laminar flow past a circular cylinder
,”
Appl. Math. Modell.
33
,
1228
1247
(
2009
).
53.
R. K.
Shukla
and
J. H.
Arakeri
, “
Minimum power consumption for drag reduction on a circular cylinder by tangential surface motion
,”
J. Fluid Mech.
715
,
597
641
(
2013
).
54.
C. K.
Williams
and
C. E.
Rasmussen
,
Gaussian Processes for Machine Learning
(
MIT Press
,
Cambridge, MA
,
2006
), Vol.
2
.
55.
M.
Ebden
, “
Gaussian processes: A quick introduction
,” arXiv:1505.02965 (
2015
).
56.
C. E.
Rasmussen
, “
Gaussian processes in machine learning
,” in
Summer School on Machine Learning
(
Springer
,
2003
), pp.
63
71
.
You do not currently have access to this content.