The maglev train fills the speed gap between ground transportation and airplanes. However, the increasing train speed results in greater energy losses due to increased aerodynamic drag, impeding the green and sustainable development of high-speed railways. This study employs the numerical simulation method to explore the effects of installing air-blowing slots on the surface of the TR08 maglev train's tail car and blowing air along three different directions at two different speeds on drag reduction and the characteristics of the wake flow field. Among them, only blowing air along the streamwise direction at speeds of 12 m/s (X12) and 24 m/s (X24) shows drag reduction effects of 2.06% and 6.53%, respectively. However, considering the energy efficiency, only X12 achieves a net energy saving of 58.96%, while the energy consumption by blowing air and saving by reducing drag in X24 are roughly balanced. Air-blowing reduces the aerodynamic lift of the tail car (Cl), with blowing air along the perpendicular direction at 24 m/s (Z24) reducing the Cl by 99.57%. Additionally, Z24 reduces the maximum velocity value of the train-induced air flow ( U smax ¯) by 61.91%. The research findings provide new insight and data support for the development of blowing/suction drag reduction techniques.

1.
S.
Huang
,
Z.
Li
, and
M.
Yang
, “
Aerodynamics of high-speed maglev trains passing each other in open air
,”
J. Wind Eng. Ind. Aerodyn.
188
,
151
(
2019
).
2.
S.-S.
Ding
,
J.-L.
Liu
, and
D.-W.
Chen
, “
Aerodynamic design of the 600 km/h high-speed maglev transportation system
,”
J. Exp. Fluid Mech.
37
,
1
(
2023
).
3.
M.
Yang
,
J.
Du
,
Z.
Li
,
S.
Huang
, and
D.
Zhou
, “
Moving model test of high-speed train aerodynamic drag based on stagnation pressure measurements
,”
PLoS ONE
12
,
e0169471
(
2017
).
4.
X. H.
Zhang
,
Y.
Jiang
, and
T.
Li
, “
Effect of streamlined nose length on the aerodynamic performance of a 800 km/h evacuated tube train
,”
Fluid Dyn. Mater. Process.
16
,
67
(
2020
).
5.
Z. X.
Sun
,
Y. F.
Yao
,
D. L.
Guo
,
G. W.
Yang
,
S. B.
Yao
,
Y.
Zhang
,
D. W.
Chen
,
G. B.
Li
,
K. M.
Shang
, and
L.
Jia
, “
Research progress in aerodynamic optimization of high-speed trains
,”
Chin. J. Theor. Appl. Mech.
53
,
51
(
2021
).
6.
J.
Muñoz-Paniagua
and
J.
García
, “
Aerodynamic surrogate-based optimization of the nose shape of a high-speed train for crosswind and passing-by scenarios
,”
J. Wind Eng. Ind. Aerodyn.
184
,
139
(
2019
).
7.
J.
Munoz-Paniagua
and
J.
García
, “
Aerodynamic drag optimization of a high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
204
,
104215
(
2020
).
8.
Z.
Wu
,
Z.
Xie
,
P.
Wang
, and
W.
Ding
, “
Aerodynamic drag performance analysis of different types of high-speed train pantograph fairing
,”
J. Appl. Sci. Eng.
23
,
509
(
2020
).
9.
W.
Liu
,
Z.
Ji
,
D.
Guo
,
G.
Yang
,
G.
Zhou
, and
K.
Ren
, “
Effects of bottom deflectors on aerodynamic drag reduction of a high-speed train
,”
Acta Mech. Sin.
38
,
321251
(
2022
).
10.
T.
Li
,
H.
Liang
,
J.
Zhang
, and
J.
Zhang
, “
Numerical study on aerodynamic resistance reduction of high-speed train using vortex generator
,”
Eng. Appl. Comput. Fluid Mech.
17
,
e2153925
(
2023
).
11.
H.
Du
,
D.
Zhou
,
S.
Meng
, and
C.
Luo
, “
Effect of vortex generators on the aerodynamic performance of high-speed trains
,”
Flow. Turbul. Combust.
109
,
627
(
2022
).
12.
J.
Zhang
,
F.
Huang
,
Y.
Yu
,
S.
Han
,
Y.
Ding
, and
G.
Gao
, “
A novel wake flow control method for drag reduction of a high-speed train with vortex generators installing on streamlined tail nose
,”
Phys. Fluids
35
,
105139
(
2023
).
13.
Z.
Zhu
,
J.
Li
,
H.
Peng
, and
D.
Liu
, “
Nature-inspired structures applied in heat transfer enhancement and drag reduction
,”
Micromachines
12
,
656
(
2021
).
14.
D.
Zhou
,
L.
Wu
,
C.
Tan
, and
T. E.
Hu
, “
Study on the effect of dimple position on drag reduction of high-speed maglev train
,”
Transp. Safety Environ.
3
,
tdab027
(
2021
).
15.
D.
Wang
,
C.
Chen
, and
C.
Deng
, “
The use of non-smooth surfaces to control the wake of a high speed train
,”
Proc. Inst. Mech. Eng., Part F
234
,
1041
(
2020
).
16.
D.
Chen
,
Y.
Liu
,
H.
Chen
, and
D.
Zhang
, “
Bio-inspired drag reduction surface from sharkskin
,”
Biosurf. Biotribol.
4
,
39
(
2018
).
17.
D. J.
Zhao
,
Y. K.
Wang
,
W. W.
Cao
, and
P.
Zhou
, “
Optimization of suction control on an airfoil using multi-island genetic algorithm
,”
Procedia Eng.
99
,
696
(
2015
).
18.
R.
Wahidi
and
D. H.
Bridges
, “
Effects of distributed suction on an airfoil at low Reynolds number
,”
AIAA J.
50
,
523
(
2012
).
19.
S. F.
Tardu
and
O.
Doche
, “
Active control of the turbulent drag by a localized periodical blowing dissymmetric in time
,”
Exp. Fluids
47
,
19
(
2009
).
20.
M.
Quadrio
,
A.
Chiarini
,
J.
Banchetti
,
D.
Gatti
,
A.
Memmolo
, and
S.
Pirozzoli
, “
Drag reduction on a transonic airfoil
,”
J. Fluid Mech.
942
,
R2
(
2022
).
21.
Z.
Li
,
X.
Liu
,
P.
Lv
, and
Y.
Feng
, “
Drag reduction of blowing-based active control in a turbulent boundary layer
,”
Phys. Fluids
34
,
115146
(
2022
).
22.
L.
Zhang
,
X.
Shan
, and
T.
Xie
, “
Active control for wall drag reduction: Methods, mechanisms and performance
,”
IEEE Access
8
,
7039
(
2020
).
23.
X.
Chen
,
S.
Zhong
,
O.
Ozer
, and
A.
Weightman
, “
Control of afterbody vortices from a slanted-base cylinder using sweeping jets
,”
Phys. Fluids
34
,
075115
(
2022
).
24.
R.
Jackson
,
Z.
Wang
, and
I.
Gursul
, “
Control of upswept afterbody vortices using continuous and pulsed blowing
,”
J. Aircr.
57
,
76
(
2020
).
25.
R.
Ma
,
Z.-H.
Gao
,
L.-S.
Lu
, and
S.-S.
Chen
, “
Skin-friction drag reduction by local porous uniform blowing in spatially developing compressible turbulent boundary layers
,”
Phys. Fluids
34
,
125130
(
2022
).
26.
S.
Huang
,
Y.
Yu
,
Z.
Li
, and
Z.
Che
, “
Study of aerodynamic drag reduction of high-speed train based on tail jet-flow control
,”
J. China Railway Soc.
43
,
38
(
2021
).
27.
N.
Gao
and
J.
Du
, “
Research on drag reduction flow control technology for high-speed EMUs
,”
J. Phys.: Conf. Ser.
2455
,
012003
(
2023
).
28.
X.
Chen
,
S.
Zhong
,
O.
Ozer
, and
A.
Weightman
, “
Drag reduction of a slanted-base cylinder using sweeping jets
,”
Phys. Fluids
34
,
105101
(
2022
).
29.
Z.-W.
Chen
,
Z.-H.
Guo
,
Y.-Q.
Ni
,
T.-H.
Liu
, and
J.
Zhang
, “
A suction method to mitigate pressure waves induced by high-speed maglev trains passing through tunnels
,”
Sustainable Cities Soc.
96
,
104682
(
2023
).
30.
Z.-W.
Chen
,
G.-Z.
Zeng
,
Y.-Q.
Ni
,
T.-H.
Liu
,
J.-Q.
Niu
, and
H.-D.
Yao
, “
Reducing the aerodynamic drag of high-speed trains by air blowing from the nose part: Effect of blowing speed
,”
J. Wind Eng. Ind. Aerodyn.
238
,
105429
(
2023
).
31.
Z.-W.
Chen
,
Y.-Q.
Ni
,
Y.-W.
Wang
,
S.-M.
Wang
, and
T.-H.
Liu
, “
Mitigating crosswind effect on high-speed trains by active blowing method: A comparative study
,”
Eng. Appl. Comput. Fluid Mech.
16
,
1064
(
2022
).
32.
H.
Cui
,
G.
Chen
,
Y.
Guan
, and
W.
Deng
, “
Study on aerodynamic drag reduction at tail of 400 km/h EMU with air suction-blowing combination
,”
Machines
11
,
222
(
2023
).
33.
E. O.
Shkvar
,
A.
Jamea
,
S. J. E. J. C.
Cai
, and
A. S.
Kryzhanovskyi
, “
Effectiveness of blowing for improving the high-speed trains aerodynamics
,”
Thermophys. Aeromech.
25
,
675
(
2018
).
34.
X.
Liang
,
Z.
Luo
,
X.
Li
,
X.
Xiong
, and
X.
Zhang
, “
Drag reduction of high-speed trains via low-density gas injection
,”
AIP Adv.
12
,
065115
(
2022
).
35.
C.
Li
,
M.
Liu
,
R.
Chang
,
X.
Wang
,
W.
Liu
, and
H.
Zhang
, “
Air pressure and comfort study of the high-speed train passing through the subway station
,”
Sustainable Cities Soc.
81
,
103881
(
2022
).
36.
X.
Xiong
,
L.
Zhu
,
J.
Zhang
,
A.
Li
,
X.
Li
, and
M.
Tang
, “
Field measurements of the interior and exterior aerodynamic pressure induced by a metro train passing through a tunnel
,”
Sustainable Cities Soc.
53
,
101928
(
2020
).
37.
H.
Hemida
,
C.
Baker
, and
G.
Gao
, “
The calculation of train slipstreams using large-eddy simulation
,”
Proc. Inst. Mech. Eng., Part F
228
,
25
(
2014
).
38.
Z.
Li
,
M.
Yang
,
S.
Huang
, and
D.
Zhou
, “
A new moving model test method for the measurement of aerodynamic drag coefficient of high-speed trains based on machine vision
,”
Proc. Inst. Mech. Eng., Part F
232
,
1425
(
2018
).
39.
Z.
Liu
,
D.
Zhou
,
D.
Soper
,
G.
Chen
,
H.
Hemida
,
Z.
Guo
, and
X.
Li
, “
Numerical investigation of the slipstream characteristics of a maglev train in a tunnel
,”
Proc. Inst. Mech. Eng., Part F
237
,
179
(
2023
).
40.
Y.
Fang
,
G.
Li
,
L.
Duan
,
Z.
Han
, and
Y.
Zhao
, “
Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine
,”
Energy
218
,
119519
(
2021
).
41.
Z.
Chen
,
T.
Liu
,
W.
Li
,
Z.
Guo
, and
Y.
Xia
, “
Aerodynamic performance and dynamic behaviors of a train passing through an elongated hillock region beside a windbreak under crosswinds and corresponding flow mitigation measures
,”
J. Wind Eng. Ind. Aerodyn.
208
,
104434
(
2021
).
42.
Z.-W.
Chen
,
E.-Z.
Rui
,
T.-H.
Liu
,
Y.-Q.
Ni
,
X.-S.
Huo
,
Y.-T.
Xia
,
W.-H.
Li
,
Z.-J.
Guo
, and
L.
Zhou
, “
Unsteady aerodynamic characteristics of a high-speed train induced by the sudden change of windbreak wall structure: A case study of the Xinjiang railway
,”
Appl. Sci.
12
,
7217
(
2022
).
43.
Z.-W.
Chen
,
G.-Z.
Zeng
,
S. A.
Hashmi
,
T.-H.
Liu
,
L.
Zhou
,
J.
Zhang
, and
H.
Hemida
, “
Impact of the windbreak transition on flow structures of the high-speed railway and mitigation using oblique structure and circular curve structure transition
,”
Int. J. Numer. Methods Heat Fluid Flow
33
,
1354
(
2023
).
44.
S.
Huang
,
Z-x
Che
,
Z-w
Li
,
Y-n
Jiang
, and
Z-g
Wang
, “
Influence of tunnel cross-sectional shape on surface pressure change induced by passing metro trains
,”
Tunnelling Underground Space Technol.
106
,
103611
(
2020
).
45.
Y.
Lu
,
T.
Wang
,
C.
Zhao
,
Y.
Zhu
,
X.
Jia
,
L.
Zhang
,
F.
Shi
, and
C.
Jiang
, “
An efficient design method of indoor ventilation parameters for high-speed trains using improved proper orthogonal decomposition reconstruction
,”
J. Build. Eng.
71
,
106600
(
2023
).
46.
C. D.
Tan
,
D.
Zhou
,
G.
Chen
,
J.
Sheridan
, and
S.
Krajnovic
, “
Influences of marshalling length on the flow structure of a maglev train
,”
Int. J. Heat Fluid Flow
85
,
108604
(
2020
).
47.
Z.-X.
Che
,
S.
Huang
,
Z.-W.
Li
, and
Z.-W.
Chen
, “
Aerodynamic drag reduction of high-speed maglev train based on air blowing/suction
,”
J. Wind Eng. Ind. Aerodyn.
233
,
105321
(
2023
).
48.
J.
Bell
,
D.
Burton
,
M.
Thompson
,
A.
Herbst
, and
J.
Sheridan
, “
Dynamics of trailing vortices in the wake of a generic high-speed train
,”
J. Fluids Struct.
65
,
238
(
2016
).
49.
J. R.
Bell
,
D.
Burton
,
M. C.
Thompson
,
A. H.
Herbst
, and
J.
Sheridan
, “
Moving model analysis of the slipstream and wake of a high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
136
,
127
(
2015
).
50.
H-q
Tian
,
S.
Huang
, and
M-z
Yang
, “
Flow structure around high-speed train in open air
,”
J. Cent. South Univ.
22
,
747
(
2015
).
51.
K.
Xu
,
X.
Su
,
R.
Bensow
, and
S.
Krajnovic
, “
Drag reduction of ship airflow using steady Coanda effect
,”
Ocean Eng.
266
,
113051
(
2022
).
52.
S.
Huang
,
H.
Hemida
, and
M. Z.
Yang
, “
Numerical calculation of the slipstream generated by a CRH2 high-speed train
,”
Proc. Inst. Mech. Eng., Part F
230
,
103
(
2016
).
53.
D.
Borgmann
,
A.
Pande
,
J. C.
Little
, and
R.
Woszidlo
, “
Experimental study of discrete jet forcing for flow separation control on a wall mounted hump
,”
55th AIAA Aerospace Sciences Meeting
, 9–13 January 2017, Grapevine, Texas (AIAA, 2017).
54.
A.
Seifert
,
S.
Eliahu
,
D.
Greenblatt
, and
I.
Wygnanski
, “
Use of piezoelectric actuators for airfoil separation control
,”
AIAA J.
36
,
1535
(
1998
).
You do not currently have access to this content.