A high Rayleigh number natural convection boundary layer adjacent to the vertical heated wall was investigated at a large-scale facility. The global Rayleigh number ( R a x) measured by the temperature difference between the wall and ambient water and the distance from the bottom of the heated wall reached 1013. Experimental results confirm that the global Nusselt number N u x is scaled by power 1/3 of R a x, which is similar to the well-known asymptote of the previously achieved R a x. The velocity field obtained using particle image velocimetry (PIV) indicated that the buoyancy-dominant outer-layer scaling suggested by Wells and Worster [A geophysical-scale model of vertical natural convection boundary layers, J. Fluid Mech. 609, 111–137 (2008)] was not only applicable to scale the lower-order velocity statistics but was also valid as a reasonable measure of the spatial correlation, probability distribution, and quadrant contribution features in the outer layer. The dynamical behavior of fluid motion captured by PIV supported a robust momentum transfer to positive wall-normal direction, which was sustained by the Q1 and Q3 quadrants. In addition, merging the existing literature and current data suggested that near-wall function can be applied at a moderate R a x; the universality of this wall-function model was confirmed around z × 0.7 (where z × represents the near-wall scaled wall-normal distance, Kiš and Herwig [The near wall physics and wall functions for turbulent natural convection, Int. J. Heat Mass Transfer 55, 2625–2635 (2012)]). At a larger buoyancy regime, it was expected to follow a canonical boundary layer flow.

1.
Abedin
,
M. Z.
,
Tsuji
,
T.
, and
Hattori
,
Y.
, “
Direct numerical simulation for a time-developing natural-convection boundary layer along a vertical flat plate
,”
Int. J. Heat Mass Transfer
52
(
19–20
),
4525
4534
(
2009
).
2.
Abedin
,
M. Z.
, “
Direct numerical simulation for a time-developing natural- and combined-convection boundary layers along a heated vertical flat plate
,” Ph.D. thesis (
Nagoya Institute of Technology
,
2010
). Vol.
13903
, p.
745
.
3.
Barhaghi
,
D. G.
,
Davidson
,
L.
, and
Karlsson
,
R.
, “
Large-eddy simulation of natural convection boundary layer on a vertical cylinder
,”
Int. J. Heat Fluid Flow
27
(
5
),
811
820
(
2006
).
4.
Cheesewright
,
R.
, “
Turbulent natural convection from a vertical plane surface
,”
J. Heat Transfer
90
(
1
),
1
6
(
1968
).
5.
Fan
,
Y.
,
Li
,
Y.
,
Hang
,
J.
, and
Wang
,
K.
, “
Diurnal variation of natural convective wall flows and the resulting air change rate in a homogeneous urban canopy layer
,”
Energy. Build
153
,
201
208
(
2017
).
6.
Fan
,
Y.
,
Li
,
Y.
,
Hang
,
J.
,
Wang
,
K.
, and
Yang
,
X.
, “
Natural convection flows along a 16-storey high-rise building
,”
Build. Environ
107
,
215
225
(
2016
).
7.
Fan
,
Y.
,
Zhao
,
Y.
,
Torres
,
J. F.
,
Xu
,
F.
,
Lei
,
C.
,
Li
,
Y.
, and
Carmeliet
,
J.
, “
Natural convection over vertical and horizontal heated flat surfaces: A review of recent progress focusing on underpinnings and implications for heat transfer and environmental applications
,”
Phys. Fluids
33
,
101301
(
2021
).
8.
Fedorovich
,
E.
, and
Shapiro
,
A.
, “
Turbulent natural convection along a vertical plate immersed in a stably stratified fluid
,”
J. Fluid Mech.
636
,
41
57
(
2009
).
9.
Finnigan
,
J. J.
,
Shaw
,
R. H.
, and
Patton
,
E. G.
, “
Turbulence structure above a vegetation canopy
,”
J. Fluid Mech.
637
,
387
424
(
2009
).
10.
Fujii
,
T.
,
Takeuchi
,
M.
,
Fujii
,
M.
,
Suzaki
,
K.
, and
Uehara
,
H.
, “
Experiments on natural-convection heat transfer from the outer surface of a vertical cylinder to liquids
,”
Int. J. Heat Mass Transfer
13
(
5
),
753
770
(
1970
).
11.
George
,
W. K.
, and
Capp
,
S. P.
, “
A theory for natural convection turbulent boundary layers next to heated vertical surfaces
,”
Int. J. Heat Mass Transfer
22
(
6
),
813
826
(
1979
).
12.
Hattori
,
Y.
,
Tsuji
,
T.
,
Nagano
,
Y.
, and
Tanaka
,
N.
, “
Turbulence characteristics of natural-convection boundary layer in air along a vertical plate heated at high temperatures
,”
Int. J. Heat Fluid Flow
27
(
3
),
445
455
(
2006
).
13.
Hölling
,
M.
, and
Herwig
,
H.
, “
Asymptotic analysis of the near-wall region of turbulent natural convection flows
,”
J. Fluid Mech.
541
,
383
393
(
2005
).
14.
Howland
,
C. J.
,
Ng
,
C. S.
,
Verzicco
,
R.
, and
Lohse
,
D.
, “
Boundary layers in turbulent vertical convection at high Prandtl number
,”
J. Fluid Mech.
930
,
A32
(
2022
).
15.
Hutchins
,
N.
,
Chauhan
,
K.
,
Marusic
,
I.
,
Monty
,
J.
, and
Klewecki
,
J.
, “
Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory
,”
Boundary-Layer Meteorol.
145
,
273
306
(
2012
).
16.
Ke
,
J.
,
Williamson
,
N.
,
Armfield
,
S.
, and
Komiya
,
A.
, “
The turbulence development of a vertical natural convection boundary layer
,”
J. Fluid Mech.
964
,
A24
(
2023
).
17.
Ke
,
J.
,
Williamson
,
N.
,
Armfield
,
S.
,
Komiya
,
A.
, and
Norris
,
S.
, “
High Grashof number turbulent natural convection on an infinite vertical wall
,”
J. Fluid Mech.
929
,
A15
(
2021
).
18.
Ke
,
J.
,
Williamson
,
N.
,
Armfield
,
S.
,
McBain
,
G. D.
, and
Norris
,
S.
, “
Stability of a temporally evolving natural convection boundary layer on an isothermal wall
,”
J. Fluid Mech.
877
,
1163
1185
(
2019
).
19.
Ke
,
J.
,
Williamson
,
N.
,
Armfield
,
S.
,
Norris
,
S.
, and
Komiya
,
A.
, “
Law of the wall for a temporally evolving vertical natural convection boundary layer
,”
J. Fluid Mech.
902
,
A31
(
2020
).
20.
Kim
,
K.-H.
,
Ahn
,
J.
, and
Choi
,
J.-I.
, “
Mean thermal energy balance analysis in differentially heated vertical channel flows
,”
Phys. Fluids
33
,
065120
(
2021
).
21.
Kiš
,
P.
, and
Herwig
,
H.
, “
The near wall physics and wall functions for turbulent natural convection
,”
Int. J. Heat Mass Transfer
55
(
9–10
),
2625
2635
(
2012
).
22.
Kitamura
,
K.
,
Koike
,
M.
,
Fukuoka
,
I.
, and
Saito
,
T.
, “
Large eddy structure and heat transfer of turbulent natural convection along a vertical flat plate
,”
Int. J. Heat Mass Transfer
28
(
4
),
837
850
(
1985
).
23.
Krug
,
D.
,
Chung
,
D.
,
Philip
,
J.
, and
Marusic
,
I.
, “
Global and local aspects of entrainment in temporal plumes
,”
J. Fluid Mech.
812
,
222
250
(
2017
).
24.
Kuiken
,
H. K.
, “
An asymptotic solution for large Prandtl number free convection
,”
J. Eng. Math.
2
,
355
371
(
1968
).
25.
Nakao
,
K.
,
Hattori
,
Y.
, and
Suto
,
H.
, “
Numerical investigation of a spatially developing turbulent natural convection boundary layer along a vertical heated plate
,”
Int. J. Heat Fluid Flow
63
,
128
138
(
2017
).
26.
Ng
,
C. S.
,
Chung
,
D.
, and
Ooi
,
A.
, “
Turbulent natural convection scaling in a vertical channel
,”
Int. J. Heat Fluid Flow
44
,
554
562
(
2013
).
27.
Nottrott
,
A.
,
Onomura
,
S.
,
Inagaki
,
A.
,
Kanda
,
M.
, and
Kleissl
,
J.
, “
Convective heat transfer on leeward building walls in an urban environment: Measurements in an outdoor scale model
,”
Int. J. Heat Mass Transfer
54
(
15–16
),
3128
3138
(
2011
).
28.
Suto
,
H.
,
Matsubara
,
K.
,
Kobayashi
,
M.
,
Watanabe
,
H.
, and
Matsudaira
,
Y.
, “
Coherent structures in a fully developed stage of a non-isothermal round jet
,”
Heat Trans. Asian Res.
33
,
342
356
(
2004
).
29.
Talluru
,
K. M.
,
Armfield
,
S.
,
Williamson
,
N.
,
Kirkpatrick
,
M.
, and
Milton-McGurk
,
L.
, “
Turbulence structure of neutral and negatively buoyant jets
,”
J. Fluid Mech.
909
,
A14
(
2021
).
30.
Talluru
,
K. M.
,
Pan
,
H. F.
,
Patterson
,
J. C.
, and
Chauhan
,
K. A.
, “
Convection velocity of temperature fluctuations in a natural convection boundary layer
,”
Int. J. Heat Fluid Flow
84
,
108590
(
2020
).
31.
Thebault
,
M.
,
Giroux-Julien
,
S.
,
Timchenko
,
V.
,
Reizes
,
J.
, and
Ménézo
,
C.
, “
Numerical study of the coherent structures in a transitional vertical channel natural convection flow
,”
Phys. Fluids
33
,
034106
(
2021
).
32.
Tsuji
,
T.
, and
Kajitani
,
T.
, “
Turbulence characteristics and heat transfer enhancement of a natural convection boundary layer in water along a vertical flat plate
,” in
International Heat Transfer Conferences
(
Begell House Inc
,
2006
).
33.
Tsuji
,
T.
, and
Nagano
,
Y.
, “
Characteristics of a turbulent natural convection boundary layer along a vertical flat plate
,”
Int. J. Heat Mass Transfer
31
(
8
),
1723
1734
(
1988
).
34.
van Reeuwijk
,
M.
, and
Craske
,
J.
, “
Energy-consistent entrainment relations for jets and plumes
,”
J. Fluid Mech.
782
,
333
355
(
2015
).
35.
Versteegh
,
T. A. M.
, and
Nieuwstadt
,
F. T. M.
, “
A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions
,”
Int. J. Heat Mass Transfer
42
(
19
),
3673
3693
(
1999
).
36.
Wells
,
A. J.
, and
Wettlaufer
,
J. S.
, “
Two-dimensional density currents in a confined basin
,”
Geophys. Astrophys. Fluid Dyn.
99
(
3
),
199
218
(
2005
).
37.
Wells
,
A. J.
, and
Worster
,
M. G.
, “
A geophysical-scale model of vertical natural convection boundary layers
,”
J. Fluid Mech.
609
,
111
137
(
2008
).
38.
Wen
,
X.
,
Wang
,
L.-P.
, and
Guo
,
Z.
, “
Development of unsteady natural convection in a square cavity under large temperature difference
,”
Phys. Fluids
33
,
084108
(
2021
).
39.
Yang
,
S.
,
Bieder
,
U.
, and
Studer
,
E.
, “
LES of natural convection along a side-heated vertical wall in a water cavity applied for the scale of small modular reactor
,”
Nucl. Eng. Des.
414
,
112543
(
2023
).
40.
Yuan
,
X.
,
Moser
,
M.
, and
Suter
,
P.
, “
Wall functions for numerical simulation of turbulent natural convection along vertical plates
,”
Int. J. Heat Mass Transfer
36
(
18
),
4477
4485
(
1993
).
41.
Zhao
,
Y.
,
Chew
,
L. W.
,
Kubilay
,
A.
, and
Carmeliet
,
J.
, “
Isothermal and non-isothermal flow in street canyons: A review from theoretical, experimental and numerical perspectives
,”
Build. Environ.
184
,
107163
(
2020
).
You do not currently have access to this content.