In multiphase flows, accurately modeling the interaction between the liquid phase of complex fluids and a porous medium of solid spheres poses a fundamental challenge. The dynamics of moderately dense non-colloidal suspensions constituted by static random arrays of mono-disperse spherical particles in non-linear viscoelastic fluids is studied numerically. This numerical study consists of about 9000 different systems, in which the volume fraction ϕ ( 0.04 ϕ 0.2 ) of the dispersed solid phase, the Reynolds number Re ( 5 R e 50 ), the solvent viscosity ratio β ( 0.05 β 0.9 ), the Weissenberg number Wi ( 0.5 W i 4 ), and the mobility parameter of the Giesekus model α ( 0.1 α 0.5 ) were varied to understand the particle's interactions with the viscoelastic suspending fluid. We aim to investigate the relationship between the volume fraction of the dispersed solid phase and the non-linear rheology of shear-thinning viscoelastic fluids with the normalized average drag force F . In addition, by assessing the flow patterns predicted numerically, we were able to provide a characterization of the velocity and stress fields as a function of the simulation parameters.

1.
G.
D'Avino
and
P. L.
Maffettone
, “
Particle dynamics in viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
215
,
80
104
(
2015
).
2.
C.
Fernandes
,
S. A.
Faroughi
,
R.
Ribeiro
,
A.
Isabel
, and
G. H.
McKinley
, “
Finite volume simulations of particle-laden viscoelastic fluid flows: Application to hydraulic fracture processes
,”
Eng. Computers
38
,
5395
5421
(
2022
).
3.
A. C.
Barbati
,
J.
Desroches
,
A.
Robisson
, and
G. H.
McKinley
, “
Complex fluids and hydraulic fracturing
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
415
453
(
2016
).
4.
H. A.
Barnes
, “
A review of the rheology of filled viscoelastic systems
,”
Rheol. Rev.
1
,
1
36
(
2003
).
5.
P.
Brunn
, “
The motion of rigid particles in viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
7
,
271
288
(
1980
).
6.
M.
Yang
and
E. S. G.
Shaqfeh
, “
Mechanism of shear thickening in suspensions of rigid spheres in Boger fluids. Part II: Suspensions at finite concentration
,”
J. Rheol.
62
,
1379
1396
(
2018
).
7.
E. S. G.
Shaqfeh
, “
On the rheology of particle suspensions in viscoelastic fluids
,”
AIChE J.
65
,
1
10
(
2019
).
8.
J.
Zhou
and
I.
Papautsky
, “
Viscoelastic microfluidics: Progress and challenges
,”
Microsyst. Nanoeng.
6
,
113
(
2020
).
9.
R. I.
Tanner
,
F.
Qi
, and
K. D.
Housiadas
, “
A differential model for the rheological properties of concentrated suspensions with weakly viscoelastic matrices
,”
Rheol. Acta
49
,
169
176
(
2010
).
10.
D. L.
Koch
,
E. F.
Lee
, and
I.
Mustafa
, “
Stress in a dilute suspension of spheres in a dilute polymer solution subject to simple shear flow at finite Deborah numbers
,”
Phys. Rev. Fluids
1
,
013301
(
2016
).
11.
J.
Einarsson
,
M.
Yang
, and
E. S. G.
Shaqfeh
, “
Einstein viscosity with fluid elasticity
,”
Phys. Rev. Fluids
3
,
013301
(
2018
).
12.
G.
D'Avino
,
M. A.
Hulsen
,
F.
Snijkers
,
J.
Vermant
,
F.
Greco
, and
P. L.
Maffettone
, “
Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: Simulation results
,”
J. Rheol.
52
,
1331
1346
(
2008
).
13.
F.
Snijkers
,
G.
D'Avino
,
P. L.
Maffettone
,
F.
Greco
,
M.
Hulsen
, and
J.
Vermant
, “
Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part II. Experimental results
,”
J. Rheol.
53
,
459
480
(
2009
).
14.
N.
Phan-Thien
,
Understanding Viscoelasticity: An Introduction to Rheology, Graduate Texts in Physics
(
Springer
,
Berlin, Heidelberg
,
2012
).
15.
A. A.
Johnson
and
T. E.
Tezduyar
, “
Simulation of multiple spheres falling in a liquid-filled tube
,”
Comput. Methods Appl. Mech. Eng.
134
,
351
373
(
1996
).
16.
G.
D'Avino
and
P. L.
Maffettone
, “
Numerical simulations on the dynamics of a particle pair in a viscoelastic fluid in a microchannel: Effect of rheology, particle shape, and confinement
,”
Microfluid. Nanofluid.
23
,
82
(
2019
).
17.
K.
Höfler
and
S.
Schwarzer
, “
Navier-Stokes simulation with constraint forces: Finite-difference method for particle-laden flows and complex geometries
,”
Phys. Rev. E
61
,
7146
7160
(
2000
).
18.
Z.
Zhang
and
A.
Prosperetti
, “
A method for particle simulation
,”
J. Appl. Mech.
70
,
64
74
(
2003
).
19.
A.
Perrin
and
H. H.
Hu
, “
An explicit finite-difference scheme for simulation of moving particles
,”
J. Comput. Phys.
212
,
166
187
(
2006
).
20.
H. S.
Udaykumar
,
R.
Mittal
, and
P.
Rampunggoon
, “
Interface tracking finite volume method for complex solid-fluid interactions on fixed meshes
,”
Commun. Numer. Methods Eng.
18
,
89
97
(
2001
).
21.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
22.
S. A.
Faroughi
,
C.
Fernandes
,
J. M.
Nóbrega
, and
G. H.
McKinley
, “
A closure model for the drag coefficient of a sphere translating in a viscoelastic fluid
,”
J. Non-Newtonian Fluid Mech.
277
,
104218
(
2020
).
23.
Y. K.
Lee
and
K. H.
Ahn
, “
A novel Lattice Boltzmann method for the dynamics of rigid particles suspended in a viscoelastic medium
,”
J. Non-Newtonian Fluid Mech.
244
,
75
84
(
2017
).
24.
J.
Ma
,
Z.
Wang
,
J.
Young
,
J. C. S.
Lai
,
Y.
Sui
, and
F.-B.
Tian
, “
An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries
,”
J. Comput. Phys.
415
,
109487
(
2020
).
25.
M.
Wang
,
Y. T.
Feng
,
D. R. J.
Owen
, and
T. M.
Qu
, “
A novel algorithm of immersed moving boundary scheme for fluid–particle interactions in DEM–LBM
,”
Comput. Methods Appl. Mech. Eng.
346
,
109
125
(
2019
).
26.
S.
Qin
,
M.
Jiang
,
K.
Ma
,
J.
Su
, and
Z.
Liu
, “
Fully resolved simulations of viscoelastic suspensions by an efficient immersed boundary-lattice Boltzmann method
,”
Particuology
75
,
26
49
(
2023
).
27.
A.
Vázquez-Quesada
and
M.
Ellero
, “
SPH modeling and simulation of spherical particles interacting in a viscoelastic matrix
,”
Phys. Fluids
29
,
121609
(
2017
).
28.
M.
Liard
,
N. S.
Martys
,
W. L.
George
,
D.
Lootens
, and
P.
Hebraud
, “
Scaling laws for the flow of generalized Newtonian suspensions
,”
J. Rheol.
58
,
1993
2015
(
2014
).
29.
M.
Nitka
,
G.
Combe
,
C.
Dascalu
, and
J.
Desrues
, “
Two-scale modeling of granular materials: A DEM-FEM approach
,”
Granular Matter
13
,
277
281
(
2011
).
30.
D.
Markauskas
,
H.
Kruggel-Emden
,
R.
Sivanesapillai
, and
H.
Steeb
, “
Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow
,”
Powder Technol.
305
,
78
88
(
2017
).
31.
S.
Subramaniam
, “
Lagrangian-Eulerian methods for multiphase flows
,”
Prog. Energy Combust. Sci.
39
,
215
245
(
2013
).
32.
S. A.
Faroughi
,
A. I.
Roriz
, and
C.
Fernandes
, “
A meta-model to predict the drag coefficient of a particle translating in viscoelastic fluids: A machine learning approach
,”
Polymers
14
,
430
(
2022
).
33.
A.
Zhang
and
E. S. G.
Shaqfeh
, “
Rheology of non-Brownian particle suspensions in viscoelastic solutions. Part 1: Effect of the polymer concentration
,”
J. Rheol.
67
,
499
516
(
2023
).
34.
A.
Zhang
and
E. S. G.
Shaqfeh
, “
Rheology of non-Brownian particle suspensions in viscoelastic solutions. Part II: Effect of a shear thinning suspending fluid
,”
J. Rheol.
67
,
517
540
(
2023
).
35.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
36.
J. P. V.
Doormaal
and
G. D.
Raithby
, “
Enhancements of the simple method for predicting incompressible fluid flows
,”
Numer. Heat Transfer
7
,
147
163
(
1984
).
37.
F.
Pimenta
and
M. A.
Alves
, “
Stabilization of an open-source finite-volume solver for viscoelastic fluid flows
,”
J. Non-Newtonian Fluid Mech.
239
,
85
104
(
2017
).
38.
C.
Fernandes
,
M. S. B.
Araujo
,
L. L.
Ferrás
, and
J.
Miguel Nóbrega
, “
Improved both sides diffusion (iBSD): A new and straightforward stabilization approach for viscoelastic fluid flows
,”
J. Non-Newtonian Fluid Mech.
249
,
63
78
(
2017
).
39.
M. A.
Alves
,
P. J.
Oliveira
, and
F. T.
Pinho
, “
A convergent and universally bounded interpolation scheme for the treatment of advection
,”
Int. J. Numer. Methods Fluids
41
,
47
75
(
2003
).
40.
J.
Crank
and
P.
Nicolson
, “
A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
,”
Math. Proc. Cambridge Philos. Soc.
43
,
50
67
(
1947
).
41.
M. A.
Ajiz
and
A.
Jennings
, “
A robust incomplete Choleski-conjugate gradient algorithm
,”
Int. J. Numer. Methods Eng.
20
,
949
966
(
1984
).
42.
J.
Lee
,
J.
Zhang
, and
C.-C.
Lu
, “
Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems
,”
J. Comput. Phys.
185
,
158
175
(
2003
).
43.
D. A. H.
Jacobs
,
Preconditioned Conjugate Gradient Methods for Solving Systems of Algebraic Equations, Laboratory Note: Central Electricity Research Laboratories
(
CERL, Central Electricity Research Laboratories
,
1981
).
44.
OpenFOAM
. “
The Open Source CFD Toolbox
” (
2004
).
45.
F.
Habla
,
M. W.
Tan
,
J.
Hablberger
, and
O.
Hinrichsen
, “
Numerical simulation of the viscoelastic flow in a three-dimensional lid-driven cavity using the log-conformation reformulation in OpenFOAM
,”
J. Non-Newtonian Fluid Mech.
212
,
47
62
(
2014
).
46.
R.
Fattal
and
R.
Kupferman
, “
Constitutive laws for the matrix-logarithm of the conformation tensor
,”
J. Non-Newtonian Fluid Mech.
123
,
281
285
(
2004
).
47.
R.
Fattal
and
R.
Kupferman
, “
Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation
,”
J. Non-Newtonian Fluid Mech.
126
,
23
37
(
2005
).
48.
K. D.
Housiadas
and
R. I.
Tanner
, “
A model for the shear viscosity of non-colloidal suspensions with Newtonian matrix fluids
,”
Rheol. Acta
53
,
831
841
(
2014
).
49.
R. J.
Hill
,
D. L.
Koch
, and
A. J. C.
Ladd
, “
The first effects of fluid inertia on flows in ordered and random arrays of spheres
,”
J. Fluid Mech.
448
,
213
241
(
2001
).
50.
G. G.
Stokes
, “
On the effect of the internal friction of fluids on the motion of pendulums
,” in
Mathematical and Physical Papers
, Cambridge Library Collection - Mathematics Vol.
3
(
Cambridge University Press
,
2009
), pp.
1
10
.
51.
P. R.
Bevington
,
D. K.
Robinson
,
J. M.
Blair
,
A. J.
Mallinckrodt
, and
S.
McKay
, “
Data reduction and error analysis for the physical sciences
,”
Comput. Phys.
7
,
415
416
(
1993
).
You do not currently have access to this content.