In the field of forensic science, elongated bloodstains formed from oblique impact of droplets are sometimes used to reconstruct aspects of a bloodletting event. For low impact angles, these stains can include an asymmetric tail that bloodstain analysts can use qualitatively to establish directionality. Quantitative analysis of these bloodstain tails, and any insight that they can provide into the impact dynamics, is lacking due to experimental challenges. Previous studies of bloodstain shapes have predominantly focused on relatively large drip drops that fall vertically on flat and inclined surfaces; yet, for inclinations that produce low impact angles, gravitational effects can reshape and obscure tails, preventing insight into how tails develop on horizontal surfaces. Here, we carry out systematic experiments in which human blood droplets with diameters less than a millimeter impact a horizontal surface at impact angles ranging from 16° to 65°. High-speed imagery confirms that the tail is not part of a prompt splashing event, but rather forms at the last moments of spreading, maintaining its shape as it dries. For each stain, we link the tail length and elliptical geometry to the blood drop size and impact velocity vector that created it. Additionally, we report a power-law correlation of the dimensionless tail length with the angle and Weber and Reynolds numbers, and we describe how this correlation in conjunction with other existing correlations can improve reconstruction of the droplet size and impact velocity.

1.
S. H.
James
,
P. E.
Kish
, and
T. P.
Sutton
,
Principles of Bloodstain Pattern Analysis: Theory and Practice
(
CRC Press
,
2005
).
2.
D.
Attinger
,
C.
Moore
,
A.
Donaldson
,
A.
Jafari
, and
H. A.
Stone
, “
Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities
,”
Forensic Sci. Int.
231
,
375
396
(
2013
).
3.
R.
Chen
,
L.
Zhang
,
D.
Zang
, and
W.
Shen
, “
Blood drop patterns: Formation and applications
,”
Adv. Colloid Interface Sci.
231
,
1
14
(
2016
).
4.
T.
Bevel
and
R. M.
Gardner
,
Bloodstain Pattern Analysis with an Introduction to Crime Scene Reconstruction
(
CRC Press
,
2008
).
5.
D.
Attinger
,
P. M.
Comiskey
,
A. L.
Yarin
, and
K. D.
Brabanter
, “
Determining the region of origin of blood spatter patterns considering fluid dynamics and statistical uncertainties
,”
Forensic Sci. Int.
298
,
323
331
(
2019
).
6.
R.
Faflak
and
D.
Attinger
, “
Experimental study of how far blood spatter stains on fabrics can be found from the blood source, and relevance to crime scene reconstruction
,”
Exp. Fluids
62
,
1
17
(
2021
).
7.
R.
Faflak
and
D.
Attinger
, “
Do impact spatters depend on impact velocity, impact energy or impactor shape?
,”
Exp. Fluids
62
,
1
11
(
2021
).
8.
A.
Carter
, “
The directional analysis of bloodstain patterns theory and experimental validation
,”
Can. Soc. Forensic Sci. J.
34
,
173
189
(
2001
).
9.
N.
Laan
,
K. G.
De Bruin
,
D.
Slenter
,
J.
Wilhelm
,
M.
Jermy
, and
D.
Bonn
, “
Bloodstain pattern analysis: Implementation of a fluid dynamic model for position determination of victims
,”
Sci. Rep.
5
,
11461
(
2015
).
10.
J. C.
Bird
,
S. S.
Tsai
, and
H. A.
Stone
, “
Inclined to splash: Triggering and inhibiting a splash with tangential velocity
,”
New J. Phys.
11
,
063017
(
2009
).
11.
V.
Balthazard
,
R.
Piedelievre
,
H.
Desoille
, and
L.
Dérobert
,
Ann. Med. Leg. Criminol. Police Sci. Toxicol.
19
,
265
323
(
1939
).
12.
E.
Piotrowski
,
Ueber Entstehung, Form, Richtung u. Ausbreitung Der Blutspuren Nach Hiebwunden Des Kopfes
(
Herbert Leon Macdonell
,
1992
).
13.
C.
Rizer
,
Police Mathematics
(
Charles C. Thomas
,
Springfield, IL
,
1955
).
14.
H. L.
MacDonell
and
L. F.
Bialousz
,
Flight Characteristics and Stain Patterns of Human Blood
(
National Institute of Law Enforcement and Criminal Justice
,
Washington
,
DC
,
1971
).
15.
H. L.
MacDonell
, “
Credit where it's due
,”
J. Forensic Identif.
61
,
210
(
2011
).
16.
S.
Lejeune
and
T.
Gilet
, “
Drop impact close to the edge of an inclined substrate: Liquid sheet formation and breakup
,”
Phys. Rev. Fluids
4
,
053601
(
2019
).
17.
C.
Clanet
,
C.
Béguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
18.
I. V.
Roisman
,
E.
Berberović
, and
C.
Tropea
, “
Inertia dominated drop collisions. I. On the universal flow in the lamella
,”
Phys. Fluids
21
,
052103
(
2009
).
19.
J.
Eggers
,
M. A.
Fontelos
,
C.
Josserand
, and
S.
Zaleski
, “
Drop dynamics after impact on a solid wall: Theory and simulations
,”
Phys. Fluids
22
,
062101
(
2010
).
20.
C. D.
Adam
, “
Experimental and theoretical studies of the spreading of bloodstains on painted surfaces
,”
Forensic Sci. Int.
229
,
66
74
(
2013
).
21.
J. M.
Gordillo
,
G.
Riboux
, and
E. S.
Quintero
, “
A theory on the spreading of impacting droplets
,”
J. Fluid Mech.
866
,
298
315
(
2019
).
22.
C.
Knock
and
M.
Davison
, “
Predicting the position of the source of blood stains for angled impacts
,”
J. Forensic Sci.
52
,
1044
1049
(
2007
).
23.
N.
Laan
,
K. G.
de Bruin
,
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Maximum diameter of impacting liquid droplets
,”
Phys. Rev. Appl.
2
,
044018
(
2014
).
24.
H.
Almohammadi
and
A.
Amirfazli
, “
Asymmetric spreading of a drop upon impact onto a surface
,”
Langmuir
33
,
5957
5964
(
2017
).
25.
H.
Almohammadi
and
A.
Amirfazli
, “
Understanding the drop impact on moving hydrophilic and hydrophobic surfaces
,”
Soft Matter
13
,
2040
2053
(
2017
).
26.
S.
Buksh
,
H.
Almohammadi
,
M.
Marengo
, and
A.
Amirfazli
, “
Spreading of low-viscous liquids on a stationary and a moving surface
,”
Exp. Fluids
60
,
76
(
2019
).
27.
P.
García-Geijo
,
G.
Riboux
, and
J. M.
Gordillo
, “
Inclined impact of drops
,”
J. Fluid Mech.
897
,
A12
(
2020
).
28.
T.
Srivastava
,
S. K.
Jena
, and
S.
Kondaraju
, “
Droplet impact and spreading on inclined surfaces
,”
Langmuir
37
,
13737
13745
(
2021
).
29.
L.
Hulse-Smith
,
N. Z.
Mehdizadeh
, and
S.
Chandra
, “
Deducing drop size and impact velocity from circular bloodstains
,”
J. Forensic Sci.
50
,
1
10
(
2005
).
30.
C. D.
Stow
and
M. G.
Hadfield
, “
An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface
,”
Proc. R Soc. London, Ser. A
373
,
419
441
(
1981
).
31.
G.
Riboux
and
J. M.
Gordillo
, “
Experiments of drops impacting a smooth solid surface: A model of the critical impact speed for drop splashing
,”
Phys. Rev. Lett.
113
,
024507
(
2014
).
32.
C.
Josserand
and
S. T.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
391
(
2016
).
33.
T.
De Goede
,
N.
Laan
,
K.
De Bruin
, and
D.
Bonn
, “
Effect of wetting on drop splashing of Newtonian fluids and blood
,”
Langmuir
34
,
5163
5168
(
2018
).
34.
P.
Joris
,
W.
Develter
,
E.
Jenar
,
P.
Suetens
,
D.
Vandermeulen
,
W.
Van de Voorde
, and
P.
Claes
, “
Calculation of bloodstain impact angles using an active bloodstain shape model
,”
J. Forensic Rad. Imaging
2
,
188
198
(
2014
).
35.
S.
Shiri
,
K. F.
Martin
, and
J. C.
Bird
, “
Surface coatings including fingerprint residues can significantly alter the size and shape of bloodstains
,”
Forensic Sci. Int.
295
,
189
198
(
2019
).
36.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Contact line deposits in an evaporating drop
,”
Phys. Rev. E
62
,
756
(
2000
).
37.
D.
Brutin
,
B.
Sobac
,
B.
Loquet
, and
J.
Sampol
, “
Pattern formation in drying drops of blood
,”
J. Fluid Mech.
667
,
85
95
(
2011
).
38.
M.
Brust
,
C.
Schaefer
,
R.
Doerr
,
L.
Pan
,
M.
Garcia
,
P.
Arratia
, and
C.
Wagner
, “
Rheology of human blood plasma: Viscoelastic versus Newtonian behavior
,”
Phys. Rev. Lett.
110
,
078305
(
2013
).
39.
A.
Kolbasov
,
P. M.
Comiskey
,
R. P.
Sahu
,
S.
Sinha-Ray
,
A. L.
Yarin
,
B. S.
Sikarwar
,
S.
Kim
,
T. Z.
Jubery
, and
D.
Attinger
, “
Blood rheology in shear and uniaxial elongation
,”
Rheol. Acta
55
,
901
908
(
2016
).

Supplementary Material

You do not currently have access to this content.