Drops falling on substrates with varying wettability exhibit distinct morphologies. However, the relation between the impact force exerted by a water drop and the substrate wettability has not been thoroughly explored. In this paper, we investigate the effect of contact angle (ranging from 40° to 180°) on the impact force of water drops, along with the spreading diameter, rim height, and retracting velocity. Our attention is focused to the inertial regime with the Weber number ranging from 30 to 100, which enables us to rationalize the dynamic relations and to correlate the kinematics of the drop with the impact force through scaling analysis. We find that substrate wettability has insignificant effect on the first force peak, which arises mainly from the momentum change during the initial impact. However, it does influence the second force peak, which originates from the momentum change in the flow redirecting from the radial inward direction to the vertical direction, accompanied by a column-shape Worthington jet. The second peak force gradually diminishes as the contact angle decreases, until it becomes indistinguishable below 40°, while the time at which the second peak force emerges is delayed.

1.
P. I. A.
Kinnell
, “
Raindrop-impact-induced erosion processes and prediction: A review
,”
Hydrol. Process.
19
,
2815
2844
(
2005
).
2.
Y.
Bhosale
,
E.
Esmaili
,
K.
Bhar
, and
S.
Jung
, “
Bending, twisting and flapping leaf upon raindrop impact
,”
Bioinspir. Biomim.
15
,
036007
(
2020
).
3.
V.
Bergeron
,
D.
Bonn
,
J. Y.
Martin
, and
L.
Vovelle
, “
Controlling droplet deposition with polymer additives
,”
Nature
405
,
772
775
(
2000
).
4.
M.
Song
,
J.
Ju
,
S.
Luo
,
Y.
Han
,
Z.
Dong
,
Y.
Wang
,
Z.
Gu
,
L.
Zhang
,
R.
Hao
, and
L.
Jiang
, “
Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant
,”
Sci. Adv.
3
,
e1602188
(
2017
).
5.
D.
Lohse
, “
Fundamental fluid dynamics challenges in inkjet printing
,”
Annu. Rev. Fluid Mech.
54
,
349
382
(
2022
).
6.
J.
Breitenbach
,
I. V.
Roisman
, and
C.
Tropea
, “
From drop impact physics to spray cooling models: A critical review
,”
Exp. Fluids
59
,
55
(
2018
).
7.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Outcomes from a drop impact on solid surfaces
,”
At. Sprays
11
,
155
166
(
2001
).
8.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
9.
C.
Josserand
and
S. T.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
391
(
2016
).
10.
V.
Sanjay
,
P.
Chantelot
, and
D.
Lohse
, “
When does an impacting drop stop bouncing?
,”
J. Fluid Mech.
958
,
A26
(
2023
).
11.
S.
Wildeman
,
C. W.
Visser
,
C.
Sun
, and
D.
Lohse
, “
On the spreading of impacting drops
,”
J. Fluid Mech.
805
,
636
655
(
2016
).
12.
W.
Fang
,
K.
Zhang
,
Q.
Jiang
,
C.
Lv
,
C.
Sun
,
Q.
Li
,
Y.
Song
, and
X.-Q.
Feng
, “
Drop impact dynamics on solid surfaces
,”
Appl. Phys. Lett.
121
,
210501
(
2022
).
13.
H.
Li
,
W.
Fang
,
Y.
Li
,
Q.
Yang
,
M.
Li
,
Q.
Li
,
X.-Q.
Feng
, and
Y.
Song
, “
Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces
,”
Nat. Commun.
10
,
950
(
2019
).
14.
L.
Wang
,
Z.
Tian
,
G.
Jiang
,
X.
Luo
,
C.
Chen
,
X.
Hu
,
H.
Zhang
, and
M.
Zhong
, “
Spontaneous dewetting transitions of droplets during icing & melting cycle
,”
Nat. Commun.
13
,
378
(
2022
).
15.
S.
Nishimoto
and
B.
Bhushan
, “
Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity
,”
RSC Adv.
3
,
671
690
(
2013
).
16.
E.
Vazirinasab
,
R.
Jafari
, and
G.
Momen
, “
Application of superhydrophobic coatings as a corrosion barrier: A review
,”
Surf. Coat. Technol.
341
,
40
56
(
2018
).
17.
H.
Zhong
,
Z.
Zhu
,
J.
Lin
,
C. F.
Cheung
,
V. L.
Lu
,
F.
Yan
,
C.-Y.
Chan
, and
G.
Li
, “
Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances
,”
ACS Nano
14
,
6213
6221
(
2020
).
18.
D.
Bartolo
,
F.
Bouamrirene
,
E.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
,”
Europhys. Lett.
74
,
299
305
(
2006
).
19.
B.
Amirzadeh
,
A.
Louhghalam
,
M.
Raessi
, and
M.
Tootkaboni
, “
A computational framework for the analysis of rain-induced erosion in wind turbine blades, part I: Stochastic rain texture model and drop impact simulations
,”
J. Wind. Eng. Ind. Aerodyn.
163
,
33
43
(
2017
).
20.
M. A.
Nearing
,
J. M.
Bradford
, and
R. D.
Holtz
, “
Measurement of force vs. time relations for waterdrop impact
,”
Soil Sci. Soc. Amer. J.
50
,
1532
1536
(
1986
).
21.
A.
Sahaya Grinspan
and
R.
Gnanamoorthy
, “
Impact force of low velocity liquid droplets measured using piezoelectric PVDF film
,”
Colloids Surf., A
356
,
162
168
(
2010
).
22.
J.
Li
,
B.
Zhang
,
P.
Guo
, and
Q.
Lv
, “
Impact force of a low speed water droplet colliding on a solid surface
,”
J. Appl. Phys.
116
,
214903
(
2014
).
23.
D.
Soto
,
A. B.
De Larivière
,
X.
Boutillon
,
C.
Clanet
, and
D.
Quéré
, “
The force of impacting rain
,”
Soft Matter
10
,
4929
4934
(
2014
).
24.
B.
Zhang
,
J.
Li
,
P.
Guo
, and
Q.
Lv
, “
Experimental studies on the effect of Reynolds and Weber numbers on the impact forces of low-speed droplets colliding with a solid surface
,”
Exp. Fluids
58
,
125
(
2017
).
25.
L.
Gordillo
,
T. P.
Sun
, and
X.
Cheng
, “
Dynamics of drop impact on solid surfaces: Evolution of impact force and self-similar spreading
,”
J. Fluid Mech.
840
,
190
214
(
2018
).
26.
B. R.
Mitchell
,
J. C.
Klewicki
,
Y. P.
Korkolis
, and
B. L.
Kinsey
, “
The transient force profile of low-speed droplet impact measurements and model
,”
J. Fluid Mech.
867
,
300
322
(
2019
).
27.
R.
Zhang
,
B.
Zhang
,
Q.
Lv
,
J.
Li
, and
P.
Guo
, “
Effects of droplet shape on impact force of low-speed droplets colliding with solid surface
,”
Exp. Fluids
60
,
64
(
2019
).
28.
B.
Zhang
,
V.
Sanjay
,
S.
Shi
,
Y.
Zhao
,
C.
Lv
,
X.-Q.
Feng
, and
D.
Lohse
, “
Impact forces of water drops falling on superhydrophobic surfaces
,”
Phys. Rev. Lett.
129
,
104501
(
2022
).
29.
Z.
Hu
,
F.
Chu
, and
X.
Wu
, “
Double-peak characteristic of droplet impact force on superhydrophobic surfaces
,”
Extreme Mech. Lett.
52
,
101665
(
2022
).
30.
B.
Zhang
,
H.
Zhao
,
Y.
Zhao
,
P.
Hao
, and
C.
Lv
, “
Impact force of ring bouncing on superhydrophobic surface with a bead
,”
Phys. Fluids
35
,
052104
(
2023
).
31.
W.
Fang
,
S.
Wang
,
H.
Duan
,
S. A.
Tahir
,
K.
Zhang
,
L.
Wang
,
X.-Q.
Feng
, and
M.
Song
, “
Target slinging of droplets with a flexible cantilever
,”
Droplet
2
,
e72
(
2023
).
32.
C.
Clanet
,
C.
Beguin
,
D.
Richard
, and
D.
Quere
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
33.
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Retraction dynamics of aqueous drops upon impact on non-wetting surfaces
,”
J. Fluid Mech.
545
,
329
338
(
2005
).
34.
N.
Laan
,
K. G.
de Bruin
,
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Maximum diameter of impacting liquid droplets
,”
Phys. Rev. Appl.
2
,
044018
(
2014
).
35.
S.-R.
Gao
,
B.-J.
Wei
,
J.-X.
Jin
,
J.-S.
Ye
,
Y.-F.
Wang
,
S.-F.
Zheng
,
Y.-R.
Yang
, and
X.-D.
Wang
, “
Contact time of a droplet impacting hydrophobic surfaces
,”
Phys. Fluids
34
,
067104
(
2022
).
36.
G. I.
Taylor
, “
The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets
,”
Proc. R. Soc. London, Ser. A
253
,
313
321
(
1959
).
37.
F. E. C.
Culick
, “
Comments on a ruptured soap film
,”
J. Appl. Phys.
31
,
1128
1129
(
1960
).
38.
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Contact time of a bouncing drop
,”
Nature
417
,
811
811
(
2002
).
39.
Y.
Liu
,
L.
Moevius
,
X.
Xu
,
T.
Qian
,
J. M.
Yeomans
, and
Z.
Wang
, “
Pancake bouncing on superhydrophobic surfaces
,”
Nat. Phys.
10
,
515
519
(
2014
).
40.
H.
Zhan
,
C.
Lu
,
C.
Liu
,
Z.
Wang
,
C.
Lv
, and
Y.
Liu
, “
Horizontal motion of a superhydrophobic substrate affects the drop bouncing dynamics
,”
Phys. Rev. Lett.
126
,
234503
(
2021
).
41.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
New York
,
2004
).

Supplementary Material

You do not currently have access to this content.