The venoarterial extracorporeal membrane oxygenation (VA-ECMO) is a widely adopted procedure to provide oxygenated blood support in patients who underwent cardiac shock. The current work presents a study to define a correlation between VA-ECMO support level and both systemic pressure and arterial perfusion. In this work, a numerical approach is defined on a patient-specific aortic geometry to validate this trend on a more complete case and also to investigate the behavior of the mixing zone. In particular, morphological data from computed tomography imaging of a patient-specific whole aorta, including supra aortic vessels, coronaries, and renal arteries, were adopted for the study. A computational fluid dynamic approach was set for the analysis. A total of three cardiogenic shock cases (mild, medium, and severe) were simulated. For each shock configuration, different levels of ECMO support were simulated (0–6 l/min flow range). The aortic fluid dynamics were evaluated in terms of systemic afterload, watershed zone position, and perfusion of arteries. A linear trend of the perfusion as a function of ECMO level support was investigated and successfully validated. The minimum level of ECMO support to grant the perfusion of all arteries, causing the minimum possible afterload increase, was individuated and fitted with a linear model against different levels of cardiogenic shock. The results presented demonstrated to be a first step to have a preliminary tool to establish the minimum level of ECMO support for overall perfusion as a function of cardiogenic shock percentage.

1.
H.
Thiele
,
E. M.
Ohman
,
S.
Desch
,
I.
Eitel
, and
S.
de Waha
, “
Management of cardiogenic shock
,”
Eur. Heart J.
36
,
1223
1230
(
2015
).
2.
C.
Banfi
,
M.
Pozzi
,
M.-E.
Brunner
,
F.
Rigamonti
,
N.
Murith
,
D.
Mugnai
,
J.-F.
Obadia
,
K.
Bendjelid
, and
R.
Giraud
, “
Veno-arterial extracorporeal membrane oxygenation: An overview of different cannulation techniques
,”
J. Thorac. Dis.
8
,
E875
(
2016
).
3.
D. W.
Donker
,
D.
Brodie
,
J. P.
Henriques
, and
M.
Broomé
, “
Left ventricular unloading during veno-arterial ECMO: A review of percutaneous and surgical unloading interventions
,”
Perfusion
34
,
98
105
(
2019
).
4.
L.
Baldetti
,
M.
Gramegna
,
A.
Beneduce
,
F.
Melillo
,
F.
Moroni
,
F.
Calvo
,
G.
Melisurgo
,
S.
Ajello
,
E.
Fominskiy
,
F.
Pappalardo
et al, “
Strategies of left ventricular unloading during VA-ECMO support: A network meta-analysis
,”
Int. J. Cardiol.
312
,
16
21
(
2020
).
5.
S.
Krishnan
and
G. A.
Schmidt
, “
Hemodynamic monitoring in the extracorporeal membrane oxygenation patient
,”
Curr. Opin. Crit. Care
25
,
285
291
(
2019
).
6.
P. M.
Honore
,
L.
Barreto Gutierrez
,
L.
Kugener
,
S.
Redant
,
R.
Attou
,
A.
Gallerani
, and
D.
De Bels
, “
Risk of harlequin syndrome during bi-femoral peripheral VA-ECMO: Hould we pay more attention to the watershed or try to change the venous cannulation site?
,”
Crit. Care
24
,
1
3
(
2020
).
7.
E.
Kardampiki
,
E.
Vignali
,
D.
Haxhiademi
,
D.
Federici
,
E.
Ferrante
,
S.
Porziani
,
A.
Chiappa
,
C.
Groth
,
M.
Cioffi
,
M. E.
Biancolini
et al, “
The hemodynamic effect of modified Blalock–Taussig shunt morphologies: A computational analysis based on reduced order modeling
,”
Electronics
11
,
1930
(
2022
).
8.
A.
Seetharaman
,
H.
Keramati
,
K.
Ramanathan
,
M.
E Cove
,
S.
Kim
,
K. J.
Chua
, and
H. L.
Leo
, “
Vortex dynamics of veno-arterial extracorporeal circulation: A computational fluid dynamics study
,”
Phys. Fluids
33
,
061908
(
2021
).
9.
F. R.
Nezami
,
F.
Khodaee
,
E. R.
Edelman
, and
S. P.
Keller
, “
A computational fluid dynamics study of the extracorporeal membrane oxygenation-failing heart circulation
,”
ASAIO J.
67
,
276
(
2021
).
10.
F. R.
Nezami
,
M.
Ramezanpour
,
F.
Khodaee
,
E.
Goffer
,
E. R.
Edelman
, and
S. P.
Keller
, “
Simulation of fluid-structure interaction in extracorporeal membrane oxygenation circulatory support systems
,”
J. Cardiovasc. Transl. Res.
15
,
249
257
(
2022
).
11.
S.
Celi
,
E.
Gasparotti
,
K.
Capellini
,
F.
Bardi
,
M. A.
Scarpolini
,
C.
Cavaliere
,
F.
Cademartiri
, and
E.
Vignali
, “
An image-based approach for the estimation of arterial local stiffness in vivo
,”
Front. Bioeng. Biotechnol.
11
,
1096196
(
2023
).
12.
B. M.
Fanni
,
M. N.
Antonuccio
,
A.
Pizzuto
,
S.
Berti
,
G.
Santoro
, and
S.
Celi
, “
Uncertainty quantification in the in vivo image-based estimation of local elastic properties of vascular walls
,”
J. Cardiovasc. Develop. Dis.
10
,
109
(
2023
).
13.
A.
Wickramarachchi
,
S. D.
Gregory
, and
M.
Khamooshi
, “
Comparison of single-stage and multi-stage drainage cannula flow characteristics during venoarterial extracorporeal membrane oxygenation
,”
Phys. Fluids
35
,
021905
(
2023
).
14.
D.
Malinowski
,
Y.
Fournier
,
A.
Horbach
,
M.
Frick
,
M.
Magliani
,
S.
Kalverkamp
,
M.
Hildinger
,
J.
Spillner
,
M.
Behbahani
, and
F.
Hima
, “
Computational fluid dynamics analysis of endoluminal aortic perfusion
,”
Perfusion
38
,
1222
(
2023
).
15.
A.
Wickramarachchi
,
A. J.
Burrell
,
A. F.
Stephens
,
M.
Šeman
,
A.
Vatani
,
M.
Khamooshi
,
J.
Raman
,
R.
Bellomo
, and
S. D.
Gregory
, “
The effect of arterial cannula tip position on differential hypoxemia during venoarterial extracorporeal membrane oxygenation
,”
Phys. Eng. Sci. Med.
46
,
119
129
(
2022
).
16.
K.
Gu
,
Z.
Zhang
,
B.
Gao
,
Y.
Chang
, and
F.
Wan
, “
Hemodynamic effects of perfusion level of peripheral ECMO on cardiovascular system
,”
Biomed. Eng. Online
17
,
59
(
2018
).
17.
G.
Fragomeni
,
M. V.
Caruso
, and
M.
Rossi
, “
Flow analysis in VA ECMO support: A CFD study
,” in
2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
(
IEEE
,
2020
), pp.
1440
1441
.
18.
S.
Celi
,
E.
Gasparotti
,
K.
Capellini
,
E.
Vignali
,
B. M.
Fanni
,
L. A.
Ali
,
M.
Cantinotti
,
M.
Murzi
,
S.
Berti
,
G.
Santoro
et al, “
3D printing in modern cardiology
,”
Curr. Pharm. Des.
27
,
1918
1930
(
2021
).
19.
S.
Celi
,
N.
Martini
,
L. E.
Pastormerlo
,
V.
Positano
, and
S.
Berti
, “
Multimodality imaging for interventional cardiology
,”
Curr. Pharm. Des.
23
,
3285
3300
(
2017
).
20.
S.
Celi
,
E.
Vignali
,
K.
Capellini
, and
E.
Gasparotti
, “
On the role and effects of uncertainties in cardiovascular in silico analyses
,”
Front. Med. Technol.
3
,
748908
(
2021
).
21.
E.
Pavlushkov
,
M.
Berman
, and
K.
Valchanov
, “
Cannulation techniques for extracorporeal life support
,”
Ann. Transl. Med.
5
,
70
(
2017
).
22.
L.
Xu
,
T.
Yang
,
L.
Yin
,
Y.
Kong
,
Y.
Vassilevski
, and
F.
Liang
, “
Numerical simulation of blood flow in aorta with dilation: A comparison between laminar and LES modeling methods
,”
Comput. Model. Eng. Sci.
124
,
509
526
(
2020
).
23.
M.
Spiegel
,
T.
Redel
,
Y. J.
Zhang
,
T.
Struffert
,
J.
Hornegger
,
R. G.
Grossman
,
A.
Doerfler
, and
C.
Karmonik
, “
Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation
,”
Comput. Methods Biomech. Biomed. Eng.
14
,
9
22
(
2011
).
24.
I.
Vignon-Clementel
,
C.
Figueroa
,
K.
Jansen
, and
C.
Taylor
, “
Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries
,”
Comput. Methods Biomech. Biomed. Eng.
13
,
625
640
(
2010
).
25.
M. N.
Antonuccio
,
A.
Mariotti
,
B. M.
Fanni
,
K.
Capellini
,
C.
Capelli
,
E.
Sauvage
, and
S.
Celi
, “
Effects of uncertainty of outlet boundary conditions in a patient-specific case of aortic coarctation
,”
Ann. Biomed. Eng.
49
,
3494
3507
(
2021
).
26.
S.
Numata
,
K.
Itatani
,
K.
Kanda
,
K.
Doi
,
S.
Yamazaki
,
K.
Morimoto
,
K.
Manabe
,
K.
Ikemoto
, and
H.
Yaku
, “
Blood flow analysis of the aortic arch using computational fluid dynamics
,”
Eur. J. Cardio-Thorac. Surg.
49
,
1578
1585
(
2016
).
27.
M.
Stevens
,
F.
Callaghan
,
P.
Forrest
,
P.
Bannon
, and
S.
Grieve
, “
Flow mixing during peripheral veno-arterial extra corporeal membrane oxygenation–a simulation study
,”
J. Biomech.
55
,
64
70
(
2017
).
28.
A.
Mahalingam
,
U. U.
Gawandalkar
,
G.
Kini
,
A.
Buradi
,
T.
Araki
,
N.
Ikeda
,
A.
Nicolaides
,
J. R.
Laird
,
L.
Saba
, and
J. S.
Suri
, “
Numerical analysis of the effect of turbulence transition on the hemodynamic parameters in human coronary arteries
,”
Cardiovasc. Diagn. Ther.
6
,
208
(
2016
).
29.
K.
Capellini
,
E.
Vignali
,
E.
Costa
,
E.
Gasparotti
,
M. E.
Biancolini
,
L.
Landini
,
V.
Positano
, and
S.
Celi
, “
Computational fluid dynamic study for aTAA hemodynamics: An integrated image-based and radial basis functions mesh morphing approach
,”
J. Biomech. Eng.
140
,
111007
(
2018
).
30.
D. E.
Mohrman
and
L. J.
Heller
,
Cardiovascular Physiology
, 9th ed. (
McGraw-Hill Education LLC
,
New York
,
2018
).
31.
K.
Sagar
,
L.
Pelc
,
T.
Rhyne
,
L.
Wann
, and
D.
Waltier
, “
Influence of heart rate, preload, afterload, and inotropic state on myocardial ultrasonic backscatter
,”
Circulation
77
,
478
483
(
1988
).
32.
M.
Chung
,
A. L.
Shiloh
, and
A.
Carlese
, “
Monitoring of the adult patient on venoarterial extracorporeal membrane oxygenation
,”
Sci. World J.
2014
,
393258
.
33.
P.
Meani
,
S.
Gelsomino
,
E.
Natour
,
D. M.
Johnson
,
H.-P. B. L.
Rocca
,
F.
Pappalardo
,
E.
Bidar
,
M.
Makhoul
,
G.
Raffa
,
S.
Heuts
et al, “
Modalities and effects of left ventricle unloading on extracorporeal life support: A review of the current literature
,”
Eur. J. Heart Failure
19
,
84
91
(
2017
).
34.
B.
Schrage
,
D.
Burkhoff
,
N.
Rübsamen
,
P. M.
Becher
,
M.
Schwarzl
,
A.
Bernhardt
,
H.
Grahn
,
E.
Lubos
,
G.
Söffker
,
P.
Clemmensen
et al, “
Unloading of the left ventricle during venoarterial extracorporeal membrane oxygenation therapy in cardiogenic shock
,”
JACC
6
,
1035
1043
(
2018
).
35.
A. R.
Prisco
,
J.
Aguado-Sierra
,
C.
Butakoff
,
M.
Vazquez
,
G.
Houzeaux
,
B.
Eguzkitza
,
J. A.
Bartos
,
D.
Yannopoulos
,
G.
Raveendran
,
M.
Holm
et al, “
Concomitant respiratory failure can impair myocardial oxygenation in patients with acute cardiogenic shock supported by VA-ECMO
,”
J. Cardiovasc. Transl. Res.
15
,
217
226
(
2022
).
36.
G. M.
Raffa
,
M.
Kowalewski
,
D.
Brodie
,
M.
Ogino
,
G.
Whitman
,
P.
Meani
,
M.
Pilato
,
A.
Arcadipane
,
T.
Delnoij
,
E.
Natour
et al, “
Meta-analysis of peripheral or central extracorporeal membrane oxygenation in postcardiotomy and non-postcardiotomy shock
,”
Ann. Thorac. Surg.
107
,
311
321
(
2019
).
37.
M. E.
Biancolini
,
K.
Capellini
,
E.
Costa
,
C.
Groth
, and
S.
Celi
, “
Fast interactive CFD evaluation of hemodynamics assisted by RBF mesh morphing and reduced order models: The case of aTAA modelling
,”
Int. J. Interact. Des. Manuf.
14
,
1227
1238
(
2020
).
38.
K.
Capellini
,
E.
Gasparotti
,
U.
Cella
,
E.
Costa
,
B. M.
Fanni
,
C.
Groth
,
S.
Porziani
,
M. E.
Biancolini
, and
S.
Celi
, “
A novel formulation for the study of the ascending aortic fluid dynamics with in vivo data
,”
Med. Eng. Phys.
91
,
68
78
(
2020
).
39.
B. M.
Fanni
,
A.
Pizzuto
,
G.
Santoro
, and
S.
Celi
, “
Introduction of a novel image-based and non-invasive method for the estimation of local elastic properties of great vessels
,”
Electronics
11
,
2055
(
2022
).
40.
K.
Calò
,
K.
Capellini
,
G.
De Nisco
,
V.
Mazzi
,
E.
Gasparotti
,
D.
Gallo
,
S.
Celi
, and
U.
Morbiducci
, “
Impact of wall displacements on the large-scale flow coherence in ascending aorta
,”
J. Biomech.
154
,
111620
(
2023
).
41.
L.
Geronzi
,
E.
Gasparotti
,
K.
Capellini
,
U.
Cella
,
C.
Groth
,
S.
Porziani
,
A.
Chiappa
,
S.
Celi
, and
M. E.
Biancolini
, “
High fidelity fluid-structure interaction by radial basis functions mesh adaption of moving walls: A workflow applied to an aortic valve
,”
J. Comput. Sci.
51
,
101327
(
2021
).
42.
M. A.
Scarpolini
,
M.
Mazzoli
, and
S.
Celi
, “
Enabling supra-aortic vessels inclusion in statistical shape models of the aorta: A novel non-rigid registration method
,”
Front. Physiol.
14
,
1211461
(
2023
).
43.
J.
Lemétayer
,
L. M.
Broman
, and
L.
Prahl Wittberg
, “
Flow dynamics and mixing in extracorporeal support: A study of the return cannula
,”
Front. Bioeng. Biotechnol.
9
,
630568
(
2021
).
44.
F.
Fiusco
,
J.
Lemétayer
,
L. M.
Broman
, and
L.
Prahl Wittberg
, “
Effect of flow rate ratio and positioning on a lighthouse tip ECMO return cannula
,”
Biomech. Model. Mechanobiol.
22
,
1891
1899
(
2023
).
45.
L. P.
Parker
,
A.
Svensson Marcial
,
T. B.
Brismar
,
L. M.
Broman
, and
L.
Prahl Wittberg
, “
Hemodynamic and recirculation performance of dual lumen cannulas for venovenous extracorporeal membrane oxygenation
,”
Sci. Rep.
13
,
7472
(
2023
).
You do not currently have access to this content.