A recent Maxey–Riley theory for Sargassum raft motion, which models a raft as a network of elastically interacting finite size, buoyant particles, predicts the carrying flow velocity to be given by the weighted sum of the water and air velocities ( 1 α ) v + α w. The theory provides a closed formula for parameter α, referred to as windage, depending on the water-to-particle-density ratio or buoyancy (δ). From a series of laboratory experiments in an air–water stream flume facility under controlled conditions, we estimate α ranging from 0.02% to 0.96%. On average, our windage estimates can be up to nine times smaller than that considered in conventional Sargassum raft transport modeling, wherein it is customary to add a fraction of w to v chosen in an ad hoc piecemeal manner. Using the formula provided by the Maxey–Riley theory, we estimate δ ranging from 1.00 to 1.49. This is consistent with direct δ measurements, ranging from 0.9 to 1.25, which provide support for our α estimation.

1.
L. D.
Bertola
,
J. T.
Boehm
,
N. F.
Putman
,
A. T.
Xue
,
J. D.
Robinson
,
S.
Harris
,
C. C.
Baldwin
,
I.
Overcast
, and
M. J.
Hickerson
, “
Asymmetrical gene flow in five co-distributed syngnathids explained by ocean currents and rafting propensity
,”
Proc. R. Soc. B
287
,
20200657
(
2020
).
2.
M.
Wang
,
C.
Hu
,
B.
Barnes
,
G.
Mitchum
,
B.
Lapointe
, and
J. P.
Montoya
, “
The great Atlantic Sargassum belt
,”
Science
365
,
83
87
(
2019
).
3.
G. N. D.
Addico
and
K. A. A.
deGraft Johnson
, “
Preliminary investigation into the chemical composition of the invasive brown seaweed Sargassum along the West Coast of Ghana
,”
Afr. J. Biotechnol.
15
,
2184
2191
(
2016
).
4.
V.
Smetacek
and
A.
Zingone
, “
Green and golden seaweed tides on the rise
,”
Nature
504
,
84
88
(
2013
).
5.
F. J.
Beron-Vera
, “
Nonlinear dynamics of inertial particles in the ocean: From drifters and floats to marine debris and Sargassum
,”
Nonlinear Dyn.
103
,
1
26
(
2021
).
6.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
(
1983
).
7.
J. H. E.
Cartwright
,
U.
Feudel
,
G.
Károlyi
,
A.
de Moura
,
O.
Piro
, and
T.
Tél
, “
Dynamics of finite-size particles in chaotic fluid flows
,” in
Nonlinear Dynamics and Chaos: Advances and Perspectives
, edited by
M.
Thiel
,
J.
Kurths
,
M.
Romano
,
G.
Karolyi
, and
A.
Moura
(
Springer-Verlag, Berlin, Heidelberg
,
2010
), pp.
51
87
.
8.
F. J.
Beron-Vera
,
M. J.
Olascoaga
, and
P.
Miron
, “
Building a Maxey–Riley framework for surface ocean inertial particle dynamics
,”
Phys. Fluids
31
,
096602
(
2019
).
9.
M. J.
Olascoaga
,
F. J.
Beron-Vera
,
P.
Miron
,
J.
Triñanes
,
N. F.
Putman
,
R.
Lumpkin
, and
G. J.
Goni
, “
Observation and quantification of inertial effects on the drift of floating objects at the ocean surface
,”
Phys. Fluids
32
,
026601
(
2020
).
10.
P.
Miron
,
M. J.
Olascoaga
,
F. J.
Beron-Vera
,
J.
Triñanes
,
N. F.
Putman
,
R.
Lumpkin
, and
G. J.
Goni
, “
Clustering of marine-debris-and Sargassum-like drifters explained by inertial particle dynamics
,”
Geophys. Res. Lett.
47
,
e2020GL089874
, https://doi.org/10.1029/2020GL089874 (
2020
).
11.
P.
Miron
,
S.
Medina
,
M. J.
Olascaoaga
, and
F. J.
Beron-Vera
, “
Laboratory verification of a Maxey–Riley theory for inertial ocean dynamics
,”
Phys. Fluids
32
,
071703
(
2020
).
12.
F. J.
Beron-Vera
and
P.
Miron
, “
A minimal Maxey–Riley model for the drift of Sargassum rafts
,”
J. Fluid Mech.
904
,
A8
(
2020
).
13.
F.
Andrade-Canto
,
F. J.
Beron-Vera
,
G. J.
Goni
,
D.
Karrasch
,
M. J.
Olascoaga
, and
J.
Trinanes
, “
Carriers of Sargassum and mechanism for coastal inundation in the Caribbean Sea
,”
Phys. Fluids
34
,
016602
(
2022
).
14.
P.
Ripa
, “
Least squares data fitting
,”
Cienc. Mar.
28
,
79
105
(
2002
).
15.
G.
Novelli
,
C.
Guigand
,
C.
Cousin
,
E. H.
Ryan
,
N. J.
Laxague
,
H.
Dai
,
B. K.
Haus
, and
T. M.
Özgökmen
, “
A biodegradable surface drifter for ocean sampling on a massive scale
,”
J. Atmos. Oceanic Technol.
34
,
2509
2532
(
2017
).
16.
S. D.
Smith
, “
Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature
,”
J. Geophys. Res.
93
,
15467
15472
, https://doi.org/10.1029/JC093iC12p15467 (
1988
).
17.
S. A.
Hsu
,
E. A.
Meindl
, and
D. B.
Gilhousen
, “
Determining the power-law wind-profile exponet under near-neutral stability conditions at sea
,”
J. Appl. Met.
33
,
757
765
(
1994
).
18.
A.
Lukezic
,
T.
Vojír
,
L.
Cehovin Zajc
,
J.
Matas
, and
M.
Kristan
, “
Discriminative correlation filter tracker with channel and spatial reliability
,”
Int. J. Comput. Vision
126
,
671
688
(
2018
).
19.
E. M.
Johns
,
R.
Lumpkin
,
N. F.
Putman
,
R. H.
Smith
,
F. E.
Muller-Karger
,
D. T.
Rueda-Roa
,
C.
Hu
,
M.
Wang
,
M. T.
Brooks
,
L. J.
Gramer
, and
F. E.
Werner
, “
The establishment of a pelagic Sargassum population in the tropical Atlantic: Biological consequences of a basin-scale long distance dispersal event
,”
Prog. Oceanogr.
182
,
102269
(
2020
).
20.
N. F.
Putman
,
R.
Lumpkin
,
M. J.
Olascoaga
,
J.
Trinanes
, and
G. J.
Goni
, “
Improving transport predictions of pelagic Sargassum
,”
J. Exp. Mar. Biol. Ecol.
529
,
151398
(
2020
).
21.
J.
Jouanno
,
J.-S.
Moquet
,
L.
Berline
,
M.-H.
Radenac
,
W.
Santini
,
T.
Changeux
,
T.
Thibaut
,
W.
Podlejski
,
F.
Ménard
,
J.-M.
Martinez
,
O.
Aumont
,
J.
Sheinbaum
,
N.
Filizola
, and
G. D. M.
N'Kaya
, “
Evolution of the riverine nutrient export to the tropical atlantic over the last 15 years: Is there a link with Sargassum proliferation?
,”
Environ. Res. Lett.
16
,
034042
(
2021
).
22.
D. R.
Johnson
,
J. S.
Franks
,
H. A.
Oxenford
, and
S.-A. L.
Cox
, “
Pelagic Sargassum prediction and marine connectivity in the tropical Atlantic
,”
Gulf Caribb. Res.
31
,
GCFI20
GCFI30
(
2020
).
23.
J.
Franks
,
D.
Johnson
, and
D.
Ko
, “
Pelagic Sargassum in the Tropical North Atlantic
,”
Gulf Caribb. Res.
27
,
C6
11
(
2016
).
24.
N. F.
Putman
,
G. J.
Goni
,
L. J.
Gramer
,
C.
Hu
,
E. M.
Johns
,
J.
Trinanes
, and
M.
Wang
, “
Simulating transport pathways of pelagic Sargassum from the equatorial Atlantic into the Caribbean Sea
,”
Prog. Oceanogr.
165
,
205
214
(
2018
).
25.
L.
Berline
,
A.
Ody
,
J.
Jouanno
,
C.
Chevalier
,
J.-M.
Andre
,
T.
Thibaut
, and
F.
Menard
, “
Hindcasting the 2017 dispersal of Sargassum algae in the Tropical North Atlantic
,”
Mar. Pollut. Bull.
158
,
111431
(
2020
).
26.
J.
Jouanno
,
R.
Benshila
,
L.
Berline
,
A.
Soulié
,
M.-H.
Radenac
,
G.
Morvan
,
F.
Diaz
,
J.
Sheinbaum
,
C.
Chevalier
,
T.
Thibaut
,
T.
Changeux
,
F.
Menard
,
S.
Berthet
,
O.
Aumont
,
C.
Ethé
,
P.
Nabat
, and
M.
Mallet
, “
A NEMO-based model of Sargassum distribution in the tropical Atlantic: Description of the model and sensitivity analysis (NEMO-Sarg1.0)
,”
Geosci. Model Dev.
14
,
4069
4086
(
2021
).
27.
K. S.
Alleyne
,
F.
Neat
, and
H. A.
Oxenford
, “
An analysis of arsenic concentrations associated with Sargassum influx events in Barbados
,”
Mar. Pollut. Bull.
192
,
115064
(
2023
).
28.
W.
Podlejski
,
L.
Berline
,
D.
Nerini
,
A.
Doglioli
, and
C.
Lett
, “
A new Sargassum drift model derived from features tracking in MODIS images
,”
Mar. Pollut. Bull.
188
,
114629
(
2023
).
29.
J.
Lara-Hernández
,
C.
Enriquez
,
J.
Zavala-Hidalgo
,
E.
Cuevas
,
B.
van Tussenbroek
, and
A.
Uribe-Martínez
, “
Sargassum transport towards Mexican Caribbean shores: Numerical modeling for research and forecasting
,”
J. Mar. Syst.
241
,
103923
(
2024
).
30.
N. F.
Putman
,
R. T.
Beyea
,
L. A. R.
Iporac
,
J.
Triñanes
,
E. G.
Ackerman
,
M. J.
Olascoaga
,
C. M.
Appendini
,
J.
Arriaga
,
L.
Collado-Vides
,
R.
Lumpkin
,
C.
Hu
, and
G.
Goni
, “
Improving satellite monitoring of coastal inundations of pelagic Sargassum algae with wind and citizen science data
,”
Aquat. Bot.
188
,
103672
(
2023
).
31.
See https://github.com/SargassumLab/SargassumWindageVideos for more information about SargassumWindageVideos.
You do not currently have access to this content.