A collaborative and interdisciplinary strategy spanning hydrodynamics, sophisticated materials, elasticity, and microelectromechanical systems technologies is required for the effective deployment of wing propulsive lifting systems in ships and underwater vehicles. The hydrodynamic characteristics play a crucial role in the motion performance of the marine vehicle, which employs a wing propulsive lifting system. The present study aims at reviewing the hydrodynamics of the wing propulsive lifting system for ships and underwater vehicles, covering the relevant classical work, mathematical models, numerical simulations, and experimental results. This study contributes to the academic discourse by conducting a meticulous examination of the hydrodynamics underlying wing propulsive lifting systems. The classification of research methods enables a comprehensive comparison of results, facilitating accurate performance evaluation. The review concludes by presenting key insight and recommending potential avenues for future research, thereby propelling the knowledge and development of wing-propulsive lifting systems within the scholarly community.

1.
G.
Bridge
, “
Material worlds: Natural resources, resource geography and the material economy
,”
Geogr. Compass
3
,
1217
(
2009
).
2.
Y.
Zhang
,
S. U.
Khan
,
B.
Swallow
,
W.
Liu
, and
M.
Zhao
, “
Coupling coordination analysis of China's water resources utilization efficiency and economic development level
,”
J. Clean Prod.
373
,
133874
(
2022
).
3.
M. H.
Zikargae
,
A. G.
Woldearegay
, and
T.
Skjerdal
, “
Environmental conflicts as key factors influencing participatory environmental communication and sustainable development of a rural society
,”
Conflict Resolut. Q.
39
,
383
(
2022
).
4.
P.
Foley
and
C.
Mather
, “
Ocean grabbing, terraqueous territoriality and social development
,”
Territ., Polit., Governance
7
,
297
(
2019
).
5.
S. M.
Borras
, Jr.
and
J. C.
Franco
, “
The challenge of locating land-based climate change mitigation and adaptation politics within a social justice perspective: Towards an idea of agrarian climate justice
,”
Third World Q.
39
,
1308
(
2018
).
6.
H.
Zhong
, “
Exploitation and utilization of marine resources and protection of marine ecology
,”
IOP Conf. Ser.: Earth Environ. Sci.
369
,
012009
(
2019
).
7.
B.
Huang
,
B.
Zhao
,
L.
Wang
,
P.
Wang
,
H.
Zhao
,
P.
Guo
,
S.
Yang
, and
D.
Wu
, “
The effects of heave motion on the performance of a floating counter-rotating type tidal turbine under wave-current interaction
,”
Energy Convers. Manage.
252
,
115093
(
2022
).
8.
D.
Zhang
,
B.
Zhao
, and
K.
Zhu
, “
Mechanical characteristics analysis of horizontal lifting of subsea pipeline with different burial depths
,”
Front. Earth Sci.
10
,
1011291
(
2022
).
9.
D.
Zhang
,
B.
Zhao
,
K.
Zhu
, and
H.
Jiang
, “
Dynamic analysis of full-circle swinging hoisting operation of a large revolving offshore crane vessel under different wave directions
,”
J. Mar. Sci. Eng.
11
,
197
(
2023
).
10.
D.
Zhang
,
B.
Zhao
,
K.
Zhu
, and
H.
Jiang
, “
Dynamic response of deep-Sea trawl system during towing process
,”
J. Mar. Sci. Eng.
11
,
145
(
2023
).
11.
B.
Zhao
,
Y.
Yun
,
F.
Hu
,
J.
Sun
,
D.
Wu
, and
B.
Huang
, “
Hydrodynamic coefficients of the DARPA SUBOFF AFF-8 in rotating arm maneuver. Part I. Test technology and validation
,”
Ocean Eng.
266
,
113148
(
2022
).
12.
B.
Zhao
,
Y.
Yun
,
F.
Hu
,
J.
Sun
,
D.
Wu
, and
B.
Huang
, “
Hydrodynamic coefficients of the DARPA SUBOFF AFF-8 in rotating arm maneuver. Part II. Test results and discussion
,”
Ocean Eng.
268
,
113466
(
2023
).
13.
K. V.
Rozhdestvensky
, “
Wing-in-ground effect vehicles
,”
Prog. Aeosp. Sci.
42
,
211
(
2006
).
14.
Z. H.
Munim
and
H.
Haralambides
, “
Advances in maritime autonomous surface ships (MASS) in merchant shipping
,”
Marit. Econ. Logist.
24
,
181
(
2022
).
15.
C. A.
Thieme
,
I. B.
Utne
, and
S.
Haugen
, “
Assessing ship risk model applicability to marine autonomous surface ships
,”
Ocean Eng.
165
,
140
(
2018
).
16.
L.
Wang
,
Q.
Wu
,
J.
Liu
,
S.
Li
, and
R. R.
Negenborn
, “
State-of-the-art research on motion control of maritime autonomous surface ships
,”
J. Mar. Sci. Eng.
7
,
438
(
2019
).
17.
A.
Sahoo
,
S. K.
Dwivedy
, and
P. S.
Robi
, “
Advancements in the field of autonomous underwater vehicle
,”
Ocean Eng.
181
,
145
(
2019
).
18.
R. D.
Geertsma
,
R. R.
Negenborn
,
K.
Visser
, and
J. J.
Hopman
, “
Design and control of hybrid power and propulsion systems for smart ships: A review of developments
,”
Appl. Energy
194
,
30
(
2017
).
19.
S.
Naito
and
H.
Isshiki
, “
Effect of bow wings on ship propulsion and motions
,”
Appl. Mech. Rev.
58
,
253
(
2005
).
20.
G.
Li
,
G.
Liu
,
D.
Leng
,
X.
Fang
,
G.
Li
, and
W.
Wang
, “
Underwater undulating propulsion biomimetic robots: A review
,”
Biomimetics.
8
,
318
(
2023
).
21.
A. F.
Molland
,
S. R.
Turnock
,
D. A.
Hudson
, and
I.
Utama
, “
Reducing ship emissions: A review of potential practical improvements in the propulsive efficiency of future ships
,”
Int. J. Marit. Eng.
156
,
175
(
2014
).
22.
M.
Cianferra
,
A.
Petronio
, and
V.
Armenio
, “
Non-linear noise from a ship propeller in open sea condition
,”
Ocean Eng.
191
,
106474
(
2019
).
23.
N.
Planakis
,
G.
Papalambrou
, and
N.
Kyrtatos
, “
Integrated load-split scheme for hybrid ship propulsion considering transient propeller load and environmental disturbance
,”
J. Dyn. Sys., Meas., Control.
143
,
031004
(
2021
).
24.
H.
Sajedi
and
M.
Mahdi
, “
Investigation of the effect of propeller flexibility on cavitation formation and hydrodynamic coefficients
,”
J. Mar. Sci. Technol.
27
,
1116
(
2022
).
25.
J.
Yulong
,
S.
Yuqing
,
C.
Haiquan
,
Z.
Yindong
,
C.
Lei
, and
Z.
Hongpeng
, “
Study on integrated hydraulic propulsion vessel
,” in
2007 IEEE International Symposium on Industrial Electronics
(
IEEE
,
2007
), pp.
2016
2021
.
26.
C.
Dymarski
, “
A concept design of diesel-hydraulic propulsion system for passenger ship intended for inland shallow water navigation
,”
Pol. Marit. Res.
26
,
30
(
2019
).
27.
B.
Xin
,
L.
Xiaohui
,
S.
Zhaocun
, and
Z.
Yuquan
, “
A vectored water jet propulsion method for autonomous underwater vehicles
,”
Ocean Eng.
74
,
133
(
2013
).
28.
X.
,
Q.
Zhou
, and
B.
Fang
, “
Hydrodynamic performance of distributed pump-jet propulsion system for underwater vehicle
,”
J. Hydrodyn.
26
,
523
(
2014
).
29.
Q.
Li
,
S.
Abdullah
, and
M. R. M.
Rasani
, “
A review of progress and hydrodynamic design of integrated motor pump-jet propulsion
,”
Appl. Sci.
12
,
3824
(
2022
).
30.
S.
Shi
,
W.
Tang
,
X.
Huang
, and
H.
Hua
, “
Effects of the stator prewhirl angle on the unsteady force under uniform and turbulent inflow for a pump-jet propulsor: A numerical study
,”
Ships Offshore Struct.
17
,
2660
(
2022
).
31.
D.
Cébron
,
S.
Viroulet
,
J.
Vidal
,
J.
Masson
, and
P.
Viroulet
, “
Experimental and theoretical study of magnetohydrodynamic ship models
,”
PLoS One
12
,
e0186166
(
2017
).
32.
C.
Chan
,
J.
Cheng
,
C.
Zeng
,
J.
Huang
,
Y.
Chen
,
Y.
Chen
,
T. T.
Pham
,
W.
Chao
,
J.
Jeng
, and
T.
Liu
, “
Design of marine vehicle powered by magnetohydrodynamic thruster
,”
Magnetohydrodynamics
56
,
51
(
2020
).
33.
D.
Zhang
,
K. H.
Low
,
H.
Xie
, and
L.
Shen
, “
Advances and trends of bionic underwater propulsors
,” in
2009 WRI Global Congress on Intelligent Systems
(
IEEE
,
2009
), pp.
13
19
.
34.
H.
Zhou
,
T.
Hu
,
H.
Xie
,
D.
Zhang
, and
L.
Shen
, “
Computational and experimental study on dynamic behavior of underwater robots propelled by bionic undulating fins
,”
Sci. China Technol. Sci.
53
,
2966
(
2010
).
35.
P. J.
Zhou
,
T.
Liu
,
X. H.
Zhou
,
J. G.
Mou
,
S. H.
Zheng
,
Y.
Gu
, and
D. H.
Wu
, “
Overview of progress in development of the bionic underwater propulsion system
,”
J. Biomim. Biomater. Biomed. Eng.
32
,
9
(
2017
).
36.
X.
Huang
,
P.
Sun
,
H.
Lyu
, and
A.
Zhang
, “
Numerical investigations on bionic propulsion problems using the multi-resolution delta-plus SPH model
,”
Eur. J. Mech. B
95
,
106
(
2022
).
37.
X.
Zeng
,
M.
Xia
,
Z.
Luo
,
J.
Shang
,
Y.
Xu
, and
Q.
Yin
, “
Design and control of an underwater robot based on hybrid propulsion of quadrotor and bionic undulating fin
,”
J. Mar. Sci. Eng.
10
,
1327
(
2022
).
38.
Y.
Li
,
D.
Pan
,
Z.
Ma
, and
Q.
Zhao
, “
Aspect ratio effect of a pair of flapping wings on the propulsion of a bionic autonomous underwater glider
,”
J. Bionic Eng.
16
,
145
(
2019
).
39.
M. I.
Lamas
and
C. G.
Rodriguez
, “
Hydrodynamics of biomimetic marine propulsion and trends in computational simulations
,”
J. Mar. Sci. Eng.
8
,
479
(
2020
).
40.
J.
He
,
Y.
Cao
,
Q.
Huang
,
G.
Pan
,
X.
Dong
, and
Y.
Cao
, “
Effects of bionic pectoral fin Rays' spanwise flexibility on forwarding propulsion performance
,”
J. Mar. Sci. Eng.
10
,
783
(
2022
).
41.
N. P. B.
Mannam
,
P.
Krishnankutty
,
H.
Vijayakumaran
, and
R. C.
Sunny
, “
Experimental and numerical study of penguin mode flapping foil propulsion system for ships
,”
J. Bionic Eng.
14
,
770
(
2017
).
42.
D.
Chu
,
X.
Liu
, and
M.
Zhang
, “
Research on turtle hydrofoil motion principle and bionics
,” in
2007 IEEE International Conference on Automation and Logistics
(
IEEE
,
2007
), pp.
2373
2378
.
43.
K. V.
Rozhdestvensky
and
V. A.
Ryzhov
,
Hydrodynamics of Systems with Flapping Wings
(
Izd.Sankt-Peterburgskogo Gosudarstvennogo Morskogotekhnicheskogo Universiteta
,
Saint-Petersburg
,
2002
).
44.
T. M.
Faure
,
K.
Roncin
,
B.
Viaud
,
T.
Simonet
, and
L.
Daridon
, “
Flapping wing propulsion: Comparison between discrete vortex method and other models
,”
Phys. Fluids
34
,
034108
(
2022
).
45.
K.
Rozhdestvensky
and
V. A.
Ryzhov
, “
Flapping-wing propulsion
,”
McGraw-Hill Yearbook of Science and Technology
(
McGraw-Hill
,
2005
).
46.
J.
Han
,
Z.
Yuan
, and
G.
Chen
, “
Effects of kinematic parameters on three-dimensional flapping wing at low Reynolds number
,”
Phys. Fluids
30
,
081901
(
2018
).
47.
Y.
Zhang
,
Y.
Feng
,
W.
Chen
, and
F.
Gao
, “
Effect of pivot location on the semi-active flapping hydrofoil propulsion for wave glider from wave energy extraction
,”
Energy
255
,
124491
(
2022
).
48.
J. S.
Izraelevitz
,
M.
Kotidis
, and
M. S.
Triantafyllou
, “
Optimized kinematics enable both aerial and aquatic propulsion from a single three-dimensional flapping wing
,”
Phys. Rev. Fluids
3
,
73102
(
2018
).
49.
D. W.
Murphy
,
D.
Adhikari
,
D. R.
Webster
, and
J.
Yen
, “
Underwater flight by the planktonic sea butterfly
,”
J. Exp. Biol.
219
,
535
(
2016
).
50.
N. P. B.
Mannam
and
P.
Krishnankutty
, “
Hydrodynamic study of flapping foil propulsion system fitted to surface and underwater vehicles
,”
Ships Offshore Struct.
13
,
575
(
2018
).
51.
K. A.
Belibassakis
and
G. K.
Politis
, “
Hydrodynamic performance of flapping wings for augmenting ship propulsion in waves
,”
Ocean Eng.
72
,
227
(
2013
).
52.
L.
Prototypes
, “
The key to new technology
,” in
Bionics Symposium
(
Wright-Patterson Air Force Base
,
Ohio
,
1960
).
53.
R.
Ramamurti
and
W.
Sandberg
, “
Simulation of flow about flapping airfoils using finite element incompressible flow solver
,”
AIAA J.
39
,
253
(
2001
).
54.
M. S.
Triantafyllou
,
F. S.
Hover
,
A. H.
Techet
, and
D.
Yue
, “
Review of hydrodynamic scaling laws in aquatic locomotion and fishlike swimming
,”
Appl. Mech. Rev.
58
,
226
(
2005
).
55.
R.
Ramamurti
and
W. C.
Sandberg
, “
A three-dimensional computational study of the aerodynamic mechanisms of insect flight
,”
J. Exp. Biol.
205
,
1507
(
2002
).
56.
M.
Zhang
,
X.
Liu
,
D.
Chu
, and
S.
Guo
, “
The principle of turtle motion and bio-mechanism of its four limbs research
,” in
2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application
(
IEEE
,
2008
), pp.
573
578
.
57.
H. X.
Shi
,
J.
Meng
,
Y.
Li
,
H. Z.
Zhang
,
F.
Wang
, and
W.
Xu
, “
Effects of fitting error on the hydraulic performance of bionic hydrofoils
,”
Int. J. Sim. Mod.
21
,
296
(
2022
).
58.
N. P. B.
Mannam
,
P.
Krishnankutty
,
A.
Serpi
, and
M.
Porru
, “
Biological propulsion systems for ships and underwater vehicles
,” in
Propulsion Systems
(
IntechOpen
,
London
,
2019
), p.
113
.
59.
N. P. B.
Mannam
,
M. M.
Alam
, and
P.
Krishnankutty
, “
Review of biomimetic flexible flapping foil propulsion systems on different planetary bodies
,”
Results Eng.
8
,
100183
(
2020
).
60.
E. G.
Drucker
and
G. V.
Lauder
, “
Experimental hydrodynamics of fish locomotion: Functional insights from wake visualization
,”
Integr. Comp. Biol.
42
,
243
(
2002
).
61.
G. V.
Lauder
,
P. G.
Madden
,
R.
Mittal
,
H.
Dong
, and
M.
Bozkurttas
, “
Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish
,”
Bioinspir. Biomim.
1
,
S25
(
2006
).
62.
R.
Mittal
,
H.
Dong
,
M.
Bozkurttas
,
G.
Lauder
, and
P.
Madden
, “
Locomotion with flexible propulsors: II. Computational modeling of pectoral fin swimming in sunfish
,”
Bioinspir. Biomim.
1
,
S35
(
2006
).
63.
H.
Dong
,
M.
Bozkurttas
,
R.
Mittal
,
P.
Madden
, and
G. V.
Lauder
, “
Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin
,”
J. Fluid Mech.
645
,
345
(
2010
).
64.
S.
Heathcote
,
Z.
Wang
, and
I.
Gursul
, “
Effect of spanwise flexibility on flapping wing propulsion
,”
J. Fluids Struct.
24
,
183
(
2008
).
65.
Z.
Chang
,
C.
Deng
,
J.
Zhang
,
Z.
Feng
, and
Z.
Zheng
, “
Propulsion performance analysis of wave-powered boats
,”
Int. J. Eng. Technol. Inn.
10
,
121
(
2020
).
66.
X.
Wu
,
X.
Zhang
,
X.
Tian
,
X.
Li
, and
W.
Lu
, “
A review on fluid dynamics of flapping foils
,”
Ocean Eng.
195
,
106712
(
2020
).
67.
Z.
Lou
,
M.
Lei
,
H.
Dong
,
K.
Zhao
, and
C.
Li
, “
Effects of wing-induced flow on the odor plume structures in an upwind surging flight of monarch butterfly
,” in
APS Division of Fluid Dynamics Meeting Abstracts
(
2021
).
68.
Z.
Hao
,
B.
Yin
,
P.
Prapamonthon
, and
G.
Yang
, “
Hydrodynamic performance of a penguin wing: Effect of feathering and flapping
,”
Phys. Fluids.
35
,
061907
(
2023
).
69.
X.
Zhu
,
G.
He
, and
X.
Zhang
, “
Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil
,”
Comput. Fluids
97
,
1
(
2014
).
70.
X.
Si
,
L.
Wang
,
S.
Liao
, and
C.
Di
, “
Simulation of hydrofoil stability based on Fluent
,”
Proc. SPIE
12339
,
123390J
(
2022
).
71.
H.
Safari
,
M.
Abbaspour
, and
M.
Darbandi
, “
Numerical study to evaluate the important parameters affecting the hydrodynamic performance of Manta Ray's in flapping motion
,”
Appl. Ocean Res.
109
,
102559
(
2021
).
72.
A. D.
Becker
,
H.
Masoud
,
J. W.
Newbolt
,
M.
Shelley
, and
L.
Ristroph
, “
Hydrodynamic schooling of flapping swimmers
,”
Nat. Commun.
6
,
8514
(
2015
).
73.
H.
Huang
,
C.
Sheng
,
J.
Wu
,
G.
Wu
,
C.
Zhou
, and
H.
Wang
, “
Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot
,”
Appl. Ocean Res.
108
,
102528
(
2021
).
74.
X.
Bi
,
H.
Shen
,
J.
Zhou
, and
Y.
Su
, “
Numerical analysis of the influence of fixed hydrofoil installation position on seakeeping of the planing craft
,”
Appl. Ocean Res.
90
,
101863
(
2019
).
75.
V.
Khramushin
, “
Shipbuilding researches for a small autonomous hydrophysical vessel
,” in
Proceedings of the 3nd Asia-Pacific Workshop on Marine Hydrodynamics
(
Shanghai Jiao Tong University
,
Shanghai, China
,
2006
).
76.
K.
Belibassakis
and
I.
Malefaki
, “
Noise generation and propagation by biomimetic dynamic-foil thruster
,” in
Proceedings of the Euronoise
, Madeira, Portugal (European Acoustics Association,
2021
), p.
25
.
77.
I.
Malefaki
,
A.
Karperaki
, and
K.
Belibassakis
, “
Noise generation and propagation from flapping-foil thrusters used for marine propulsion
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2022
).
78.
I.
Malefaki
and
K.
Belibassakis
, “
A novel FDTD–PML scheme for noise propagation generated by biomimetic flapping thrusters in the ocean environment
,”
J. Mar. Sci. Eng.
10
,
1240
(
2022
).
79.
I.
Malefaki
,
A.
Karperaki
, and
K.
Belibassakis
, “
Modelling underwater noise propagation emitted from oscillating lifting surfaces
,” in
Sustainable Development and Innovations in Marine Technologies
(
CRC Press
,
2022
).
80.
K.
Belibassakis
,
J.
Prospathopoulos
, and
I.
Malefaki
, “
Scattering and directionality effects of noise generation from flapping thrusters used for propulsion of small ocean vehicles
,”
J. Mar. Sci. Eng.
10
,
1129
(
2022
).
81.
J.
Young
,
J. C.
Lai
, and
M. F.
Platzer
, “
A review of progress and challenges in flapping foil power generation
,”
Prog. Aeosp. Sci.
67
,
2
(
2014
).
82.
D. E.
Shormann
and
M.
In Het Panhuis
, “
Performance evaluation of a humpback whale-inspired hydrofoil design applied to surfboard fins
,” in
Oceans 2019 MTS/IEEE Seattle
(
IEEE
,
2019
).
83.
Q.
Sun
,
J.
Wu
,
C.
Sheng
,
S.
Hu
,
Z.
Wang
, and
H.
Huang
, “
Design and implementation of multi-level linkage mechanism bionic pectoral fin for manta ray robot
,”
Ocean Eng.
284
,
115152
(
2023
).
84.
D.
Zhang
,
G.
Pan
,
Y.
Cao
,
Q.
Huang
, and
Y.
Cao
, “
A novel integrated gliding and flapping propulsion biomimetic Manta-Ray robot
,”
J. Mar. Sci. Eng.
10
,
924
(
2022
).
85.
X.
Wang
,
Y.
Wang
,
P.
Wang
,
S.
Yang
,
W.
Niu
, and
Y.
Yang
, “
Design, analysis, and testing of Petrel acoustic autonomous underwater vehicle for marine monitoring
,”
Phys. Fluids
34
,
037115
(
2022
).
86.
N.
Ha
,
N.
Goo
, and
H.
Yoon
, “
Development of a propulsion system for a biomimetic thruster
,”
Chin. Sci. Bull.
56
,
432
(
2011
).
87.
L.
Alberti
,
E.
Carnevali
,
D.
Costa
, and
A.
Crivellini
, “
A computational fluid dynamics investigation of a flapping hydrofoil as a thruster
,”
Biomimetics
8
,
135
(
2023
).
88.
E. S.
Filippas
and
K. A.
Belibassakis
, “
A nonlinear time-domain BEM for the performance of 3D flapping-wing thrusters in directional waves
,”
Ocean Eng.
245
,
110157
(
2022
).
89.
D.
Costa
,
M.
Franciolini
,
G.
Palmieri
,
A.
Crivellini
, and
D.
Scaradozzi
, “
Computational fluid dynamics analysis and design of an ostraciiform swimming robot
,” in
2017 IEEE International Conference on Robotics and Biomimetics
(
IEEE
,
2017
).
90.
E. S.
Filippas
,
G. P.
Papadakis
, and
K. A.
Belibassakis
, “
Free-surface effects on the performance of flapping-foil thruster for augmenting ship propulsion in waves
,”
J. Mar. Sci. Eng.
8
,
357
(
2020
).
91.
K.
Sakellariou
,
Z. A.
Rana
, and
K. W.
Jenkins
, “
Optimisation of the surfboard fin shape using computational fluid dynamics and genetic algorithms
,”
Proc. Inst. Mech. Eng., Part P
231
,
175433711770453
(
2017
).
92.
See http://futurefoils.tomkennaugh.co.uk/docs/AllProject.pdf for
I. D.
Godfrey
, “
The application of hydrofoils in high speed water craft
” (
2003
).
93.
K.
Rozhdestvensky
, “
A simplified mathematical model of pumped hydrofoils
,”
J. Mar. Sci. Eng.
11
,
913
(
2023
).
94.
D.
Scaradozzi
,
G.
Palmieri
,
D.
Costa
, and
A.
Pinelli
, “
BCF swimming locomotion for autonomous underwater robots: A review and a novel solution to improve control and efficiency
,”
Ocean Eng.
130
,
437
(
2017
).
95.
J.
Singh
,
D.
Gandhi
,
M.
Sanghani
,
P. S.
Robi
, and
S. K.
Dwivedy
, “
Design and development of underwater robot
,” in
2015 International Conference on Robotics, Automation, Control and Embedded Systems
(
IEEE
,
2015
), pp.
1
7
.
96.
M.
Listak
,
D.
Pugal
, and
M.
Kruusmaa
, “
Biomimetic fish-like underwater robot for shallow water applications
,” in
Proceedings of the International Conference on Advanced Robotics, ICAR
(
2007
).
97.
Z.
Li
,
D.
Xia
,
J.
Cao
,
W.
Chen
, and
X.
Wang
, “
Hydrodynamics study of dolphin's self-yaw motion realized by spanwise flexibility of caudal fin
,”
J. Ocean Eng. Sci.
7
,
213
(
2022
).
98.
R.
Kumar
and
H.
Shin
, “
Thrust prediction of an active flapping foil in waves using CFD
,”
J. Mar. Sci. Eng.
7
,
396
(
2019
).
99.
A.
Yrke
and
E.
Bøckmann
,
Full-Scale Experience with Retractable Bow Foils on M/F Teistin
(
Wavefoil
,
Alesund, Norway
,
2019
).
100.
C.
Li
,
H.
Wang
, and
P.
Sun
, “
Numerical investigation of a two-element wingsail for ship auxiliary propulsion
,”
J. Mar. Sci. Eng.
8
,
333
(
2020
).
101.
Y.
Deng
,
X.
Zhang
,
N.
Im
, and
C.
Liang
, “
Compound learning tracking control of a switched fully-submerged hydrofoil craft
,”
Ocean Eng.
219
,
108260
(
2021
).
102.
P. C.
Shukla
and
K.
Ghosh
, “
Revival of the modern wing sails for the propulsion of commercial ships
,”
Int. J. Phys. Math. Sci.
3
,
207
(
2009
).
103.
Z.
Wang
,
J.
Yu
,
A.
Zhang
,
Y.
Wang
, and
W.
Zhao
, “
Parametric geometric model and hydrodynamic shape optimization of a flying-wing structure underwater glider
,”
China Ocean Eng.
31
,
709
(
2017
).
104.
K. V.
Rozhdestvensky
and
Z. M.
Htet
, “
A mathematical model of a ship with wings propelled by waves
,”
J. Mar. Sci. Appl.
20
,
595
(
2021
).
105.
G. D.
Xu
,
W. Y.
Duan
, and
B. Z.
Zhou
, “
Propulsion of an active flapping foil in heading waves of deep water
,”
Eng. Anal. Boundary Elem.
84
,
63
(
2017
).
106.
Y.
Wang
,
X.
Sun
,
D.
Huang
, and
Z.
Zheng
, “
Numerical investigation on energy extraction of flapping hydrofoils with different series foil shapes
,”
Energy
112
,
1153
(
2016
).
107.
Y.
Cao
,
S.
Ma
,
Y.
Cao
,
G.
Pan
,
Q.
Huang
, and
Y.
Cao
, “
Similarity evaluation rule and motion posture optimization for a manta ray robot
,”
J. Mar. Sci. Eng.
10
,
908
(
2022
).
108.
Q.
Liu
,
H.
Chen
,
Z.
Wang
,
Q.
He
,
L.
Chen
,
W.
Li
,
R.
Li
, and
W.
Cui
, “
A manta ray robot with soft material based flapping wing
,”
J. Mar. Sci. Eng.
10
,
962
(
2022
).
109.
M. N. P.
Babu
,
P.
Krishnankutty
, and
J. M.
Mallikarjuna
, “
Experimental study of flapping foil propulsion system for ships and underwater vehicles and PIV study of caudal fin propulsors
,” in
2014 IEEE/OES Autonomous Underwater Vehicles
(
IEEE
,
2014
).
110.
M. M.
Maia
,
P.
Soni
, and
F. J.
Diez
, “
Demonstration of an aerial and submersible vehicle capable of flight and underwater navigation with seamless air-water transition
,” arXiv:1507.01932 (
2015
).
111.
L.
Yun
,
A.
Bliault
, and
J.
Doo
,
WIG Craft and Ekranoplan
, Ground Effect Craft Technology (
Springer
,
New York
,
2010
), p.
2
.
112.
Y.
Terao
and
N.
Sakagami
, “
Design and development of an autonomous wave-powered boat with a wave devouring propulsion system
,”
Adv. Rob.
29
,
89
(
2015
).
113.
R.
Fernandez
, “
Oscillating hydrofoil propulsion for human-powered watercraft applications
,“ Ph.D. thesis (
University of Canterbury
,
2013
).
114.
G.
Li
,
X.
Chen
,
F.
Zhou
,
Y.
Liang
,
Y.
Xiao
,
X.
Cao
,
Z.
Zhang
,
M.
Zhang
,
B.
Wu
, and
S.
Yin
, “
Self-powered soft robot in the Mariana Trench
,”
Nature
591
,
66
(
2021
).
115.
R.
Bachmayer
,
N. E.
Leonard
,
J.
Graver
,
E.
Fiorelli
,
P.
Bhatta
, and
D.
Paley
, “
Underwater gliders: Recent developments and future applications
,” in
Proceedings of the 2004 International Symposium on Underwater Technology
(
IEEE
,
2004
).
116.
J.
Yu
,
A.
Zhang
,
W.
Jin
,
Q.
Chen
,
Y.
Tian
, and
C.
Liu
, “
Development and experiments of the sea-wing underwater glider
,”
China Ocean Eng.
25
,
721
(
2011
).
117.
M. Y.
Javaid
,
M.
Ovinis
,
F. B.
Hashim
,
A.
Maimun
,
Y. M.
Ahmed
, and
B.
Ullah
, “
Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider
,”
Int. J. Nav. Archit. Ocean Eng.
9
,
382
(
2017
).
118.
Z.
Wang
,
C.
Dong
,
Z.
Zhang
,
Q.
Tian
,
A.
Sun
,
L.
Yuan
, and
L.
Zhang
, “
Review of multi-fin propulsion and functional materials of underwater bionic robotic fish
,”
Proc. Inst. Mech. Eng., Part C
236
,
7350
(
2022
).
119.
D.
Hu
,
J.
Lou
,
T.
Chen
,
Y.
Yang
,
C.
Xu
,
H.
Chen
, and
Y.
Cui
, “
Micro thrust measurement experiment and pressure field evolution of bionic robotic fish with harmonic actuation of macro fiber composites
,”
Mech. Syst. Signal Proc.
153
,
107538
(
2021
).
120.
M. T.
Tolley
,
R. F.
Shepherd
,
B.
Mosadegh
,
K. C.
Galloway
,
M.
Wehner
,
M.
Karpelson
,
R. J.
Wood
, and
G. M.
Whitesides
, “
A resilient, untethered soft robot
,”
Soft Rob.
1
,
213
(
2014
).
121.
M. A. A.
Bin Mohamed Nadzri
and
Y. A.
Ahmed
, “
Feasibility study of wing sail technology for commercial ship
,”
J. Mekanikal
44
,
26
(
2021
).
122.
Z.
Chen
,
S.
Shatara
, and
X.
Tan
, “
Modeling of robotic fish propelled by an ionic polymer-metal composite caudal fin
,” in
IEEE/ASME Transactions on Mechatronics
(
IEEE
,
2009
), available at https://jurnalmekanikal.utm.my/index.php/jurnalmekanikal/article/view/440.
123.
B. S.
Berkovs'kiy
,
Influence of Elasticity on the Lifting Force of a Wing
(
Foreign Technology Division, Wright-Patterson AFB Ohio
,
1977
).
124.
J.
Wang
,
P.
Liu
,
C.
Chin
,
G.
He
, and
W.
Song
, “
Parametric study on hydro-elasticity characteristics of auto-pitch wing-in-ground effect oscillating foil propulsors
,”
Ocean Eng.
201
,
107115
(
2020
).
125.
X.
Wu
,
P.
Yu
,
W.
Wang
,
G.
Li
, and
Y.
Pan
, “
Numerical study of the effect of wing flexibility on hydrodynamic performance of an underwater glider
,” in
32nd International Ocean and Polar Engineering Conference
(
2022
).
126.
T.
Nakamura
and
I.
Yamamoto
, “
Research on fluid analysis simulator for elastic oscillating fin of biomimetic underwater robots
,” in
2009 ICCAS-SICE
(
IEEE
,
2009
).
127.
J. C.
Choi
,
Y. C.
Choi
,
J. K.
Lee
, and
S. H.
Kong
, “
Micro-electro-mechanical-systems-based micro-ro-boat utilizing steam as propulsion power
,”
Jpn. J. Appl. Phys., Part 1
51
,
06FL12
(
2012
).
128.
D. T.
Roper
,
S.
Sharma
,
R.
Sutton
, and
P.
Culverhouse
, “
A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles
,”
Proc. Inst. Mech. Eng., Part M
225
,
77
(
2011
).
129.
J.
Liu
,
Modelling and Online Optimisation of Robotic Fish Behaviours
(
LAP LAMBERT Academic Publishing
,
2013
).
130.
P. R.
Bandyopadhyay
, “
Maneuvering hydrodynamics of fish and small underwater vehicles
,”
Integr. Comp. Biol.
42
,
102
(
2002
).
131.
Y.
Shen
,
N.
Harada
,
S.
Katagiri
, and
H.
Tanaka
, “
Biomimetic realization of a robotic penguin wing: Design and thrust characteristics
,”
IEEE/ASME Trans. Mechatron.
26
,
2350
(
2021
).
132.
H.
Hu
, “
Biologically inspired design of autonomous robotic fish at Essex
,” in
IEEE SMC UK-RI Chapter Conference, on Advances in Cybernetic Systems
(
IEEE
,
2006
).
133.
Z.
Chen
,
T. I.
Um
, and
H.
Bart-Smith
, “
Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles
,”
Int. J. Smart Nano Mater.
3
,
296
(
2012
).
134.
Y.
Xu
,
G.
Zong
,
S.
Bi
, and
J.
Gao
, “
Initial development of a flapping propelled unmanned underwater vehicle (UUV)
,” in
2007 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
IEEE
,
2007
).
135.
D.
Lu
,
C.
Xiong
,
H.
Zhou
,
C.
Lyu
,
R.
Hu
,
C.
Yu
,
Z.
Zeng
, and
L.
Lian
, “
Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle
,”
Ocean Eng.
219
,
108324
(
2021
).
136.
Z.
Wu
,
J.
Yu
,
J.
Yuan
, and
M.
Tan
, “
Towards a gliding robotic dolphin: Design, modeling, and experiments
,”
IEEE/ASME Trans. Mechatron.
24
,
260
(
2019
).
137.
A.
Suleman
and
C.
Crawford
, “
Studies on hydrodynamic propulsion of a biomimetic tuna
,” in
Underwater Vehicles
(
Intechopen
,
2008
), p.
459
.
138.
C.
Jordi
,
S.
Michel
, and
E.
Fink
, “
Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators
,”
Bioinspir. Biomim.
5
,
026007
(
2010
).
139.
E.
Basta
,
M.
Ghommem
,
L.
Romdhane
, and
M. R.
Hajj
, “
Hybrid tail excitation for robotic fish: Modeling and performance analysis
,”
Ocean Eng.
234
,
109296
(
2021
).
140.
Q.
Zhao
,
S.
Liu
,
J.
Chen
,
G.
He
,
J.
Di
,
L.
Zhao
,
T.
Su
,
M.
Zhang
, and
Z.
Hou
, “
Fast-moving piezoelectric micro-robotic fish with double caudal fins
,”
Rob. Auton. Syst.
140
,
103733
(
2021
).
141.
C.
Huang
, “
Design and propulsion performance analysis of a bio-inspired flexible flapping wing
,“ Ph.D. thesis (
Tianjin University
,
2019
) (in Chinese).
142.
J.
Zhang
, “
Propulsion design and dynamic analysis of flapping-foil underwater vehicle
,” Ph.D. thesis (
Tianjin University
,
2016
) (in Chinese).
143.
S. C.
Licht
,
M. S.
Wibawa
,
F. S.
Hover
, and
M. S.
Triantafyllou
, “
In-line motion causes high thrust and efficiency in flapping foils that use power downstroke
,”
J. Exp. Biol.
213
,
63
(
2010
).
144.
M.
La Mantia
and
P.
Dabnichki
, “
Effect of the wing shape on the thrust of flapping wing
,”
Appl. Math. Model.
35
,
4979
(
2011
).
145.
C. L.
Ladson
and
C. W.
Brooks
, Jr.
, “
Development of a computer program to obtain ordinates for NACA 4-digit, 4-digit modified, 5-digit, and 16 series airfoils
,” Technical Memorandum No. 19760003945 (
1975
).
146.
L.
Long
, “
Design and research of fully morphing flexible flapping wing underwater vehicles
,” Doctoral thesis (
Nanjing University of Aeronautics and Astronautics
,
2017
).
147.
T.
Lin
,
W.
Xia
,
R.
Pecora
,
K.
Wang
, and
S.
Hu
, “
Performance improvement of flapping propulsions from spanwise bending on a low-aspect-ratio foil
,”
Ocean Eng.
284
,
115305
(
2023
).
148.
K.
Suastika
, “
Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft
,”
IOP Conf. Ser.: Earth Environ. Sci.
135
,
012003
(
2018
).
149.
K. I.
Matveev
, “
Modeling of autonomous hydrofoil craft tracking a moving target
,”
Unmanned Syst.
08
,
171
(
2020
).
150.
H.
Karimi Baseri
,
J.
Fereidooni
,
M.
Moonesun
, and
M.
Adjami
, “
Analysis of hydrofoil craft in regular and irregular waves
,”
J. Mar. Eng.
19
,
90
(
2023
).
151.
S.
Liu
,
H.
Niu
,
L.
Zhang
, and
C.
Xu
, “
Modified adaptive complementary sliding mode control for the longitudinal motion stabilization of the fully-submerged hydrofoil craft
,”
Int. J. Nav. Archit. Ocean Eng.
11
,
584
(
2019
).
152.
A. J.
Acosta
, “
Hydrofoils and hydrofoil craft
,”
Annu. Rev. Fluid Mech.
5
,
161
(
1973
).
153.
I. N.
Ismail
,
P.
Manik
, and
M.
Indiaryanto
, “
Effect of the addition of hydrofoil on lift force and resistance in 60 M high-speed vessel
,”
Kapal
17
,
95
(
2020
).
154.
A.
Giallanza
,
G.
Marannano
,
F.
Morace
, and
V.
Ruggiero
, “
Numerical and experimental analysis of a high innovative hydrofoil
,”
Int. J. Interact. Des. Manuf.
14
,
43
(
2020
).
155.
I. B.
Abbasov
and
V. V.
Orekhov
, “
Conceptual design of multifunctional hydrofoil vessel ‘Afalina,’ 
J. Phys.: Conf. Ser.
1399
,
044020
(
2019
).
156.
S.
Liu
,
C.
Xu
, and
L.
Zhang
, “
Robust course keeping control of a fully submerged hydrofoil vessel without velocity measurement: An iterative learning approach
,”
Math. Prob. Eng.
2017
,
7979438
.
157.
D. J.
Owers
and
S. D.
Probert
, “
A human-powered hydrofoil racing-boat: Design and development
,”
Appl. Energy
21
,
289
(
1985
).
158.
J.
Cobb
, “
Evaluation of longitudinal static stability of human powered hydrofoil boat
,”
J. Soc. Naval Archit. Korea
46
,
391
(
2009
).
159.
N.
Arora
,
L.
Kabdal
, and
P.
Rajagopal
, “
Design and analysis of an overwater electric hydrofoil board
,”
OCEANS 2023
,
Limerick (IEEE
,
2023
), pp.
1
9
.
160.
E.
Anfuso
, “
Study of the longitudinal behavior of a hydrofoil surfboard
,” Ph.D. thesis (
Politecnico di Milano
,
2018
).
161.
See http://www.grogware.com/aquaskipperphotos.php for Grogware, “
Aquaskipper photos
” (
2007
).
162.
S.
Dangoor
and
T.
Brennent
, “
Human powered hydrofoil bike pontoon floatation
,“ in
ME Senior Project 2012-2013
(
California Polytechnic State University
,
2013
).
163.
K. A.
Belibassakis
and
E. S.
Filippas
, “
Ship propulsion in waves by actively controlled flapping foils
,”
Appl. Ocean Res.
52
,
1
(
2015
).
164.
Y.
Zhang
,
L.
Xu
,
Z.
Ding
, and
M.
Hu
, “
Wave propulsion and sea-keeping enhancement for ships in rough sea condition by flapping foils
,”
Ocean Eng.
266
,
112802
(
2022
).
165.
K.
Belibassakis
,
S.
Bleuanus
,
J.
Vermeiden
, and
N.
Townsend
, “
Combined performance of innovative biomimetic ship propulsion system in waves with Dual Fuel ship engine and application to short-sea shipping
,” in
31st International Ocean and Polar Engineering Conference
, Rhodes, Greece (
2021
).
166.
E. S.
Filippas
, “
Augmenting ship propulsion in waves using flapping foils initially designed for roll stabilization
,”
Procedia Comput. Sci.
66
,
103
(
2015
).
167.
J. A.
Bowker
and
N. C.
Townsend
, “
Evaluation of bow foils on ship delivered power in waves using model tests
,”
Appl. Ocean Res.
123
,
103148
(
2022
).
168.
K.
Belibassakis
, “
Augmenting ship propulsion in waves by flapping-foil thrusters
,” in
SNAME International Symposium on Ship Operations, Management and Economics
, Athens, Greece (
2023
).
169.
G.
Politis
and
K.
Politis
, “
Biomimetic propulsion under random heaving conditions, using active pitch control
,”
J. Fluids Struct.
47
,
139
(
2014
).
170.
E.
Bøckmann
and
S.
Steen
, “
Model test and simulation of a ship with wavefoils
,”
Appl. Ocean Res.
57
,
8
(
2016
).
171.
See www.wartsila.com for Wärtsilä and partners to pursue greater fuel efficiency in major EU-funded project (2023).
172.
E.
Bøckmann
,
A.
Yrke
, and
S.
Steen
, “
Fuel savings for a general cargo ship employing retractable bow foils
,”
Appl. Ocean Res.
76
,
1
(
2018
).
173.
E. S.
Filippas
and
K. A.
Belibassakis
, “
Hydrodynamic analysis of flapping-foil thrusters operating beneath the free surface and in waves
,”
Eng. Anal. Boundary Elem.
41
,
47
(
2014
).
174.
D.
Ntouras
,
G.
Papadakis
, and
K.
Belibassakis
, “
Ship bow wings with application to trim and resistance control in calm water and in waves
,”
J. Mar. Sci. Eng.
10
,
492
(
2022
).
175.
H.
Isshiki
, “
Wave energy utilization into ship propulsion by fins attached to a ship
,” in
Proceedings of the Fourth International Offshore and Polar Engineering Conference
, Osaka, Japan (
1994
).
176.
K.
Belibassakis
,
E.
Filippas
, and
G.
Papadakis
, “
Numerical and experimental investigation of the performance of dynamic wing for augmenting ship propulsion in head and quartering seas
,”
J. Mar. Sci. Eng.
10
,
24
(
2021
).
177.
K.
Belibassakis
,
J.
Vermeiden
, and
A.
Öster
, “
Development and testing of biomimetic dynamic-foil thruster for augmenting ship propulsion in waves
,” in
OCEANS 2021: San Diego–Porto
(
IEEE
,
2021
).
178.
D.
Barrett
,
M.
Grosenbaugh
, and
M.
Triantafyllou
, “
The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil
,” in
Proceedings of Symposium on Autonomous Underwater Vehicle Technology
(
IEEE
,
1996
).
179.
Z. F.
Qi
,
W. X.
Liu
,
L. J.
Jia
,
Y. F.
Qin
, and
X. J.
Sun
, “
Dynamic modeling and motion simulation for wave glider
,”
Appl. Mech. Mater.
397-400
,
285
(
2013
).
180.
S.
Li
,
Y.
Wang
,
S.
Wu
,
W.
Niu
,
S.
Yang
, and
S.
Lan
, “
Multi-body modelling and analysis of the motion platform for underwater acoustic dynamic communication
,”
Appl. Math. Model.
109
,
455
(
2022
).
181.
P.
Wang
,
D.
Wang
,
X.
Zhang
,
X.
Li
,
T.
Peng
,
H.
Lu
, and
X.
Tian
, “
Numerical and experimental study on the maneuverability of an active propeller control based wave glider
,”
Appl. Ocean Res.
104
,
102369
(
2020
).
182.
S.
Licht
,
V.
Polidoro
,
M.
Flores
,
F. S.
Hover
, and
M. S.
Triantafyllou
, “
Design and projected performance of a flapping foil AUV
,”
IEEE J. Oceanic Eng.
29
,
786
(
2004
).
183.
S.
Licht
,
F.
Hover
, and
M. S.
Triantafyllou
, “
Design of a flapping foil underwater vehicle
,” in
Proceedings of the 2004 International Symposium on Underwater Technology
(
IEEE
,
2004
).
184.
M. I.
Wolf
,
S. C.
Licht
,
F.
Hover
, and
M. S.
Triantafyllou
, “
Open loop swimming performance of ‘Finnegan’ the biomimetic flapping foil AUV
,” in
Sixteenth International Offshore Polar Engineering Conference
(
2006
).
185.
C.
Zhou
and
K.
Low
, “
Better endurance and load capacity: An improved design of manta ray robot (RoMan-II)
,”
J. Bionic Eng.
7
,
S137
(
2010
).
186.
D.
Romano
and
C.
Stefanini
, “
Unveiling social distancing mechanisms via a fish-robot hybrid interaction
,”
Biol. Cybern.
115
,
565
(
2021
).
187.
C.
Wang
,
J.
Lu
,
X.
Ding
,
C.
Jiang
,
J.
Yang
, and
J.
Shen
, “
Design, modeling, control, and experiments for a fish-robot-based IoT platform to enable smart ocean
,”
IEEE Internet Things J.
8
,
9317
(
2021
).
188.
J.
Manley
and
S.
Willcox
, “
The wave glider: A persistent platform for ocean science
,” in
Oceans'10 IEEE Sydney
(
IEEE
,
2010
).
189.
F.
Yang
,
W.
Shi
,
X.
Zhou
,
B.
Guo
, and
D.
Wang
, “
Numerical investigation of a wave glider in head seas
,”
Ocean Eng.
164
,
127
(
2018
).
190.
B.
Tian
,
J.
Guo
,
Y.
Song
,
Y.
Zhou
,
Z.
Xu
, and
L.
Wang
, “
Research progress and prospects of gliding robots applied in ocean observation
,”
J. Ocean Eng. Mar. Energy
9
,
113
(
2023
).
191.
C.
Georgiades
,
A.
German
,
A.
Hogue
,
H.
Liu
,
C.
Prahacs
,
A.
Ripsman
,
R.
Sim
,
L.
Torres
,
P.
Zhang
, and
M.
Buehler
, “
AQUA: An aquatic walking robot
,” in
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(
IEEE
,
2004
).
192.
C.
Georgiades
, ”
Simulation and control of an underwater hexapod robot
,“ Master thesis (
McGill University
,
2005
).
193.
C.
Georgiades
,
M.
Nahon
, and
M.
Buehler
, “
Simulation of an underwater hexapod robot
,”
Ocean Eng.
36
,
39
(
2009
).
194.
M.
Kemp
,
B.
Hobson
, and
J. H.
Long
, “
Madeleine: An agile AUV propelled by flexible fins
,” in
Proceedings of the 14th International Symposium on Unmanned Untethered Submersible Technology
(
2005
).
195.
J. H.
Long
,
J.
Schumacher
,
N.
Livingston
, and
M.
Kemp
, “
Four flippers or two? Tetrapodal swimming with an aquatic robot
,”
Bioinspiration Biomimetics
1
,
20
(
2006
).
196.
A.
Konno
,
T.
Furuya
,
A.
Mizuno
,
K.
Hishinuma
,
K.
Hirata
, and
M.
Kawada
, “
Development of turtle-like submergence vehicle
,” in
Proceedings of the 7th International Symposium on Marine Engineering
(
2005
).
197.
Y.
Kawamura
,
J.
Shimoya
,
E.
Yoshida
,
N.
Kato
,
H.
Suzuki
, and
H.
Senga
, “
Design and development of amphibious robot with fin actuators
,”
Int. J. Offshore Polar Eng.
20
,
175
(
2010
).
198.
X.
Liu
, “
The research of biomimetic sea turtle's flexible hydrofoils propulsion technology
,” Ph.D. thesis (
Harbin Engineering University
,
2011
) (in Chinese).
199.
W.
Zhao
,
Y.
Hu
, and
L.
Wang
, “
Construction and central pattern generator-based control of a flipper-actuated turtle-like underwater robot
,”
Adv. Rob.
23
,
19
(
2009
).
200.
K.
Low
,
C.
Zhou
,
T. W.
Ong
, and
J.
Yu
, “
Modular design and initial gait study of an amphibian robotic turtle
,” in
2007 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
IEEE
,
2007
).
201.
S.
Licht
and
N.
Durham
, “
Biomimetic robots for environmental monitoring in the surf zone and in very shallow water
,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
2012
).
202.
J.
Shimoya
,
K.
Maeda
,
E.
Yoshida
, and
N.
Kato
, “
Estimation of swimming and walking performances of a robotic turtle
,” in
the Twenty-First International Offshore and Polar Engineering Conference
(
2011
).
203.
J.
Wang
,
Q.
Liu
,
H.
Cheng
,
B.
Fang
,
J.
Zhang
, and
J.
Hong
, “
Design, fabrication and experiment of a bionic Manta Ray robot fish
,” in
2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
IEEE
,
2022
).
204.
J.
Bai
,
Q.
Huang
,
G.
Pan
, and
J.
He
, “
Data-driven prediction of experimental hydrodynamic data of the manta ray robot using deep learning method
,”
J. Mar. Sci. Eng.
10
,
1285
(
2022
).
205.
J. T.
Schaefer
and
A. P.
Summers
, “
Batoid wing skeletal structure: Novel morphologies, mechanical implications, and phylogenetic patterns
,”
J. Morphol.
264
,
298
(
2005
).
206.
J. E.
Fontanella
,
F. E.
Fish
,
E. I.
Barchi
,
R.
Campbell-Malone
,
R. H.
Nichols
,
N. K.
DiNenno
, and
J. T.
Beneski
, “
Two- and three-dimensional geometries of batoids in relation to locomotor mode
,”
J. Exp. Mar. Biol. Ecol.
446
,
273
(
2013
).
207.
H.
Hoeijmakers
,
L. G.
Koerkamp
,
L. D.
de Santana
,
C. H.
Venner
,
S.
Stramigioli
,
J. L.
Mulder
,
A.
Brentjes
,
F.
Gijsman
, and
S. A.
Hartman
, “
Investigation flapping-flight aerodynamics of a robotic bird
,” in
33rd Congress of the International Council of the Aeronautical Sciences, ICAS2022
, Stockholm, Sweden (
2022
).
208.
K. V.
Rozhdestvensky
and
V. A.
Ryzhov
, “
Aerohydrodynamics of flapping-wing propulsors
,”
Prog. Aeosp. Sci.
39
,
585
(
2003
).
209.
G. V.
Lauder
,
E. J.
Anderson
,
J.
Tangorra
, and
P. G.
Madden
, “
Fish biorobotics: Kinematics and hydrodynamics of self-propulsion
,”
J. Exp. Biol.
210
,
2767
(
2007
).
210.
N.
Vandenberghe
,
J.
Zhang
, and
S.
Childress
, “
Symmetry breaking leads to forward flapping flight
,”
J. Fluid Mech.
506
,
147
(
2004
).
211.
J. M.
Anderson
,
K.
Streitlien
,
D. S.
Barrett
, and
M. S.
Triantafyllou
, “
Oscillating foils of high propulsive efficiency
,”
J. Fluid Mech.
360
,
41
(
1998
).
212.
M. M.
Koochesfahani
, “
Vortical patterns in the wake of an oscillating airfoil
,”
AIAA J.
27
,
1200
(
1989
).
213.
J.
Lai
and
M. F.
Platzer
, “
Jet characteristics of a plunging airfoil
,”
AIAA J.
37
,
1529
(
1999
).
214.
S.
Alben
and
M.
Shelley
, “
Coherent locomotion as an attracting state for a free flapping body
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
11163
(
2005
).
215.
X.
Lu
and
Q.
Liao
, “
Dynamic responses of a two-dimensional flapping foil motion
,”
Phys. Fluids
18
,
98104
(
2006
).
216.
B.
Gulsacan
and
M.
Aureli
, “
Underwater oscillations of rigid plates with H-shaped cross sections: An experimental study to explore their flow physics
,”
Phys. Fluids.
35
,
033102
(
2023
).
217.
J.
Deng
and
C. P.
Caulfield
, “
Three-dimensional transition after wake deflection behind a flapping foil
,”
Phys. Rev. E.
91
,
043017
(
2015
).
218.
F. O.
Minotti
, “
Unsteady two-dimensional theory of a flapping wing
,”
Phys. Rev. E
66
,
051907
(
2002
).
219.
D.
Lopes
,
J.
Falcão De Campos
, and
A.
Sarmento
, “
An analytical model study of a flapping hydrofoil for wave propulsion
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2018
).
220.
S. A.
Dovgiy
and
A. V.
Shekhovtsov
,
Optimal Regimes of Operation of the Wing Propulsor with Two Degrees of Freedom
(
Institut Gidromekhaniki NAN Ukrainy
,
Kiev
,
1995
).
221.
J.
Siekmann
, “
Theoretical studies of sea animal locomotion. Part 1
,”
Ing. Arch.
31
,
214
(
1962
).
222.
J.
Siekmann
, “
Theoretical studies of sea animal locomotion. Part 2
,”
Ing. Arch.
32
,
40
(
1963
).
223.
J. P.
Uldrick
and
J.
Siekmann
, “
On the swimming of a flexible plate of arbitrary finite thickness
,”
J. Fluid Mech.
20
,
1
(
1964
).
224.
J. P.
Uldrick
, “
On the propulsion efficiency of swimming flexible hydrofoils of finite thickness
,”
J. Fluid Mech.
32
,
29
(
1968
).
225.
T. Y.
Wu
, “
Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid
,”
J. Fluid Mech.
46
,
337
(
1971
).
226.
M. J.
Lighthill
, “
Note on the swimming of slender fish
,”
J. Fluid Mech.
9
,
305
(
1960
).
227.
M. J.
Lighthill
, “
Aquatic animal propulsion of high hydromechanical efficiency
,”
J. Fluid Mech.
44
,
265
(
1970
).
228.
M. J.
Lighthill
, “
Hydromechanics of aquatic animal propulsion
,”
Annu. Rev. Fluid Mech.
1
,
416
(
1969
).
229.
M. J.
Lighthill
, “
Large-amplitude elongated-body theory of fish locomotion
,”
Proc. R. Soc.: Ser. B
179
,
1055
(
1971
).
230.
Y.
Cao
,
Y. H.
Cao
,
Q. G.
Huang
,
Y. L.
Qu
, and
G.
Pan
, “
A review of the underwater bionic flapping wing robots
,”
Dig. Ocean Underwater
6
,
4
(
2023
) (in Chinese).
231.
E. D.
Tytell
and
G. V.
Lauder
, “
The hydrodynamics of eel swimming: I. Wake structure
,”
J. Exp. Biol.
207
,
1825
(
2004
).
232.
T. Y.
Wu
, “
Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems
,”
J. Fluid Mech.
46
,
521
(
1971
).
233.
T. Y.
Wu
, “
Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins
,”
J. Fluid Mech.
46
,
545
(
1971
).
234.
M. G.
Chopra
, “
Hydromechanics of lunate-tail swimming propulsion
,”
J. Fluid Mech.
64
,
375
(
1974
).
235.
M. G.
Chopra
and
T.
Kambe
, “
Hydromechanics of lunate-tail swimming propulsion. Part 2
,”
J. Fluid Mech.
79
,
49
(
1977
).
236.
J.
Till
,
V.
Aloi
, and
C.
Rucker
, “
Real-time dynamics of soft and continuum robots based on Cosserat rod models
,”
Int. J. Rob. Res.
38
,
723
(
2019
).
237.
H.
Lang
,
J.
Linn
, and
M.
Arnold
, “
Multi-body dynamics simulation of geometrically exact Cosserat rods
,”
Multibody Syst. Dyn.
25
,
285
(
2011
).
238.
M.
Tummers
,
V.
Lebastard
,
F.
Boyer
,
J.
Troccaz
,
B.
Rosa
, and
M. T.
Chikhaoui
, “
Cosserat rod modeling of continuum robots from Newtonian and Lagrangian perspectives
,”
IEEE Trans. Rob.
39
,
2360
(
2023
).
239.
E.
Sanmiguel-Rojas
and
R.
Fernández-Feria
, “
Propulsion enhancement of flexible plunging foils: Comparing linear theory predictions with high-fidelity CFD results
,”
Ocean Eng.
235
,
109331
(
2021
).
240.
R.
Fernandez-Feria
and
J.
Alaminos-Quesada
, “
Analytical results for the propulsion performance of a flexible foil with prescribed pitching and heaving motions and passive small deflection
,”
J. Fluid Mech.
910
,
A43
(
2021
).
241.
R.
Fernandez-Feria
and
J.
Alaminos-Quesada
, “
Propulsion and energy harvesting performances of a flexible thin airfoil undergoing forced heaving motion with passive pitching and deformation of small amplitude
,”
J. Fluids Struct.
102
,
103255
(
2021
).
242.
S. A.
Ansari
,
R.
Żbikowski
, and
K.
Knowles
, “
Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 1: Methodology and analysis
,”
Proc. Inst. Mech. Eng., Part G
220
,
61
(
2006
).
243.
S. A.
Ansari
,
R.
Żbikowski
, and
K.
Knowles
, “
Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 2: Implementation and validation
,”
Proc. Inst. Mech. Eng., Part G
220
,
169
(
2006
).
244.
Z.
Guan
and
Y.
Yu
, “
Aerodynamic mechanism of forces generated by twisting model-wing in bat flapping flight
,”
Appl. Math. Mech. Engl. Ed.
35
,
1607
(
2014
).
245.
L.
Mao
,
H.
Wang
,
Y.
Li
, and
H.
Yi
, “
Force model of flapping foil stabilizers based on CFD parameterization
,”
Ocean Eng.
187
,
106151
(
2019
).
246.
B.
William
, “
A new theory for wings of small aspect ratio
,” Ph.D. thesis (
California Institute of Technology
,
1936
).
247.
M. P.
Fink
,
Aerodynamic Characteristics of Low-Aspect-Ratio Wings in Close Proximity to the Ground
(
National Aeronautics and Space Administration
,
1961
).
248.
R. T.
Jones
,
Wing Theory
(
Princeton University Press
,
2014
).
249.
P.
Rojratsirikul
,
M. S.
Genc
,
Z.
Wang
, and
I.
Gursul
, “
Flow-induced vibrations of low aspect ratio rectangular membrane wings
,”
J. Fluids Struct.
27
,
1296
(
2011
).
250.
L.
Prandtl
, “
Applications of modern hydrodynamics to aeronautics
,”
Technical Report No. NACA 116
(
Göttingen University
,
1921
).
251.
W. F.
Phillips
and
D. O.
Snyder
, “
Modern adaptation of Prandtl's classic lifting-line theory
,”
J. Aircr.
37
,
662
(
2000
).
252.
H.
Liang
and
Z.
Zong
, “
A lifting line theory for a three-dimensional hydrofoil
,”
J. Mar. Sci. Appl.
10
,
199
(
2011
).
253.
Z.
Zong
,
H.
Liang
, and
L.
Zhou
, “
Lifting line theory for wing-in-ground effect in proximity to a free surface
,”
J. Eng. Math.
74
,
143
(
2012
).
254.
H.
Cheng
and
H.
Wang
, “
Prediction of lift coefficient for tandem wing configuration or multiple-lifting-surface system using Prandtl's lifting-line theory
,”
Int. J. Aerosp. Eng.
2018
,
3104902
.
255.
J. T.
Reid
and
D. F.
Hunsaker
, “
General approach to lifting-line theory, applied to wings with sweep
,”
J. Aircr.
58
,
334
(
2021
).
256.
E.
Paifelman
,
G.
Pepe
, and
A.
Carcaterra
, “
Optimal control with memory effects: Theory and application to wings
,” in
2019 18th European Control Conference (ECC)
(
IEEE
,
2019
).
257.
J.
Graham
, “
A lifting-surface theory for the rectangular wing in non-stationary flow
,”
Aeronaut. Q.
22
,
83
(
1971
).
258.
H.
Liang
and
Z.
Zong
, “
A subsonic lifting surface theory for wing-in-ground effect
,”
Acta Mech.
219
,
203
(
2011
).
259.
H.
Djojodihardjo
,
A. S. S.
Ramli
, and
S.
Wiriadidjaja
, “
Kinematic and aerodynamic modelling of flapping wing ornithopter
,”
Procedia Eng.
50
,
848
(
2012
).
260.
M. J.
Smith
,
P. J.
Wilkin
, and
M. H.
Williams
, “
The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings
,”
J. Exp. Biol.
199
,
1073
(
1996
).
261.
Z.
Chen
, “
A vortex based panel method for potential flow simulation around a hydrofoil
,”
J. Fluids Struct.
28
,
378
(
2012
).
262.
P.
Ma
,
Z.
Yang
,
Y.
Wang
,
H.
Liu
, and
Y.
Xie
, “
Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device
,”
Renewable Energy
113
,
648
(
2017
).
263.
W.
Tian
,
B.
Song
,
X.
Du
,
Z.
Mao
, and
H.
Ding
, “
Modeling and simulation of a novel autonomous underwater vehicle with glider and flapping-foil propulsion capabilities
,”
China Ocean Eng.
26
,
603
(
2012
).
264.
M. S.
Mahmud
, “
The applicability of hydrofoils as a ship control device
,”
J. Mar. Sci. Appl.
14
,
244
(
2015
).
265.
X.
Sun
,
S.
Ma
,
H.
Sang
,
C.
Li
, and
J.
Liu
, “
Research on the propulsion performance of spring-hydrofoil mechanism of the wave glider
,”
Ocean Eng.
266
,
112709
(
2022
).
266.
X.
Sun
,
C.
Sun
,
H.
Sang
, and
C.
Li
, “
Dynamics modeling and hydrodynamic coefficients identification of the wave glider
,”
J. Mar. Sci. Eng.
10
,
520
(
2022
).
267.
G. D.
Xu
and
G. X.
Wu
, “
Hydrodynamics of a submerged hydrofoil advancing in waves
,”
Appl. Ocean Res.
42
,
70
(
2013
).
268.
E. D.
Amato
,
I.
Notaro
,
V.
Piscopo
, and
A.
Scamardella
, “
Hydrodynamic design of fixed hydrofoils for planing craft
,”
J. Mar. Sci. Eng.
11
,
246
(
2023
).
269.
H.
Liang
,
L.
Sun
,
Z.
Zong
,
L.
Zhou
, and
L.
Zou
, “
Analytical modelling for a three-dimensional hydrofoil with winglets operating beneath a free surface
,”
Appl. Math. Model.
37
,
2679
(
2013
).
270.
S. D.
Kelly
and
H.
Xiong
, “
Self-propulsion of a free hydrofoil with localized discrete vortex shedding: Analytical modeling and simulation
,”
Theor. Comput. Fluid Dyn.
24
,
45
(
2010
).
271.
K.
Rozhdestvensky
, “
Study of underwater and wave gliders on the basis of simplified mathematical models
,”
Appl. Sci.
12
,
3465
(
2022
).
272.
Y.
Li
,
D.
Pan
,
Q.
Zhao
,
Z.
Ma
, and
X.
Wang
, “
Hydrodynamic performance of an autonomous underwater glider with a pair of bioinspired hydro wings—A numerical investigation
,”
Ocean Eng.
163
,
51
(
2018
).
273.
X.
Lin
,
J.
Wu
, and
T.
Zhang
, “
Self-directed propulsion of an unconstrained flapping swimmer at low Reynolds number: Hydrodynamic behaviour and scaling laws
,”
J. Fluid Mech.
907
,
R3
(
2021
).
274.
J.
Wu
,
Y. L.
Qiu
,
C.
Shu
, and
N.
Zhao
, “
Pitching-motion-activated flapping foil near solid walls for power extraction: A numerical investigation
,”
Phys. Fluids
26
,
083601
(
2014
).
275.
J.
Wu
,
Y. L.
Chen
, and
N.
Zhao
, “
Role of induced vortex interaction in a semi-active flapping foil based energy harvester
,”
Phys. Fluids
27
,
093601
(
2015
).
276.
J.
Wu
,
C.
Shu
,
N.
Zhao
, and
F.
Tian
, “
Numerical study on the power extraction performance of a flapping foil with a flexible tail
,”
Phys. Fluids
27
,
013602
(
2015
).
277.
J.
Wu
,
Y.
Chen
,
N.
Zhao
, and
T.
Wang
, “
Influence of stroke deviation on the power extraction performance of a fully-active flapping foil
,”
Renewable Energy
94
,
440
(
2016
).
278.
C. W.
Hirt
,
A. A.
Amsden
, and
J. L.
Cook
, “
An arbitrary Lagrangian–Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
14
,
227
(
1974
).
279.
R.
Loubere
and
M. J.
Shashkov
, “
A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian–Eulerian methods
,”
J. Comput. Phys.
209
,
105
(
2005
).
280.
H. T.
Ahn
and
Y.
Kallinderis
, “
Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes
,”
J. Comput. Phys.
219
,
671
(
2006
).
281.
T. E.
Tezduyar
,
M.
Behr
,
S.
Mittal
, and
J.
Liou
, “
A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders
,”
Comput. Methods Appl. Mech. Eng.
94
,
353
(
1992
).
282.
G. J.
Dong
and
X. Y.
Lu
, “
Numerical analysis on the propulsive performance and vortex shedding of fish‐like travelling wavy plate
,”
Int. J. Numer. Methods Fluids
48
,
1351
(
2005
).
283.
R.
Mittal
,
H.
Dong
,
M.
Bozkurttas
,
F. M.
Najjar
,
A.
Vargas
, and
A.
Von Loebbecke
, “
A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
,”
J. Comput. Phys.
227
,
4825
(
2008
).
284.
P.
Han
,
G. V.
Lauder
, and
H.
Dong
, “
Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement
,”
Phys. Fluids
32
,
011902
(
2020
).
285.
A.
De Rosis
,
G.
Falcucci
,
S.
Ubertini
, and
F.
Ubertini
, “
Aeroelastic study of flexible flapping wings by a coupled lattice Boltzmann-finite element approach with immersed boundary method
,”
J. Fluids Struct.
49
,
516
(
2014
).
286.
J.
Choi
,
T.
Colonius
, and
D. R.
Williams
, “
Surging and plunging oscillations of an airfoil at low Reynolds number
,”
J. Fluid Mech.
763
,
237
(
2015
).
287.
M. R.
Visbal
, “
High-fidelity simulation of transitional flows past a plunging airfoil
,”
AIAA J.
47
,
2685
(
2009
).
288.
H.
Hao
,
Y.
Liu
,
H.
Wei
,
M.
Zhang
, and
B.
Huang
, “
Vortex dynamics of a pitching hydrofoil based on the vorticity moment theory
,”
Chin. J. Theor. Appl. Mech.
54
,
1199
(
2022
) (in Chinese).
289.
A.
Andersen
,
T.
Bohr
,
T.
Schnipper
, and
J. H.
Walther
, “
Wake structure and thrust generation of a flapping foil in two-dimensional flow
,”
J. Fluid Mech.
812
,
R4
(
2017
).
290.
H.
Lu
,
K. S.
Yeo
, and
C.
Chew
, “
Effect of pectoral fin kinematics on manta ray propulsion
,”
Mod. Phys. Lett. B.
32
,
1840025
(
2018
).
291.
F. E.
Fish
,
C. M.
Schreiber
,
K. W.
Moored
,
G.
Liu
,
H.
Dong
, and
H.
Bart-Smith
, “
Hydrodynamic performance of aquatic flapping: Efficiency of underwater flight in the manta
,”
Aerospace
3
,
20
(
2016
).
292.
H.
Farooq
,
M.
Ghommem
,
M. S. U.
Khalid
, and
I.
Akhtar
, “
Numerical investigation of hydrodynamic performance of flapping foils for energy harvesting
,”
Ocean Eng.
260
,
112005
(
2022
).
293.
X.
Zhang
,
S.
Ni
,
S.
Wang
, and
G.
He
, “
Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil
,”
Phys. Fluids
21
,
103302
(
2009
).
294.
J.
Hu
and
Q.
Xiao
, “
Three-dimensional effects on the translational locomotion of a passive heaving wing
,”
J. Fluids Struct.
46
,
77
(
2014
).
295.
J.
Deng
and
C. P.
Caulfield
, “
Dependence on aspect ratio of symmetry breaking for oscillating foils: Implications for flapping flight
,”
J. Fluid Mech.
787
,
16
(
2016
).
296.
J.
Czarnowski
,
R.
Cleary
, and
B.
Kreamer
, “
Exploring the possibility of placing traditional marine vessels under oscillating foil propulsion
,” in
the Seventh International Offshore and Polar Engineering Conference
(
1997
).
297.
P.
Han
,
Y.
Pan
,
G.
Liu
, and
H.
Dong
, “
Propulsive performance and vortex wakes of multiple tandem foils pitching in-line
,”
J. Fluids Struct.
108
,
103422
(
2022
).
298.
M.
Lahooti
and
D.
Kim
, “
Multi-body interaction effect on the energy harvesting performance of a flapping hydrofoil
,”
Renewable Energy
130
,
460
(
2019
).
299.
A.
Sánchez-Caja
,
J.
Martio
, and
V. M.
Viitanen
, “
A new propulsion concept for high propulsive hydrodynamic efficiency
,”
Ocean Eng.
243
,
110298
(
2022
).
300.
S.
Ramananarivo
,
F.
Fang
,
A.
Oza
,
J.
Zhang
, and
L.
Ristroph
, “
Flow interactions lead to orderly formations of flapping wings in forward flight
,”
Phys. Rev. Fluids
1
,
071201
(
2016
).
301.
P.
Ma
,
Y.
Wang
,
Y.
Xie
,
J.
Han
,
G.
Sun
, and
J.
Zhang
, “
Effect of wake interaction on the response of two tandem oscillating hydrofoils
,”
Energy Sci. Eng.
7
,
431
(
2019
).
302.
N.
Kumari
,
A.
Chakraborty
, and
S.
Jangam
, “
The hydrodynamic analysis of multiple hydrofoils translating in tandem in presence of a free surface
,”
Proc. Inst. Mech. Eng., Part M
2022
,
251748571
.
303.
K.
Rozhdestvensky
, “
Asymptotic theory of flapping wing propulsion in extreme ground effect
,”
Appl. Sci.
13
,
690
(
2023
).
304.
K.
Jones
,
B.
Castro
,
O.
Mahmoud
, and
M.
Platzer
, “
A numerical and experimental investigation of flapping-wing propulsion in ground effect
,” AIAA Paper No. 2002-866,
2002
.
305.
B.
Zhu
,
J.
Zhang
, and
W.
Zhang
, “
Impact of the ground effect on the energy extraction properties of a flapping wing
,”
Ocean Eng.
209
,
107376
(
2020
).
306.
G.
He
,
W.
Mo
,
Y.
Gao
,
J.
Wang
,
Z.
Zhang
,
H.
Yang
, and
W.
Mao
, “
Numerical study of a semi-passive oscillating hydrofoil on power-extraction with wing-in-ground effect
,”
J. Fluids Struct.
115
,
103761
(
2022
).
307.
W.
Mo
,
G.
He
,
J.
Wang
,
Z.
Zhang
,
Y.
Gao
,
W.
Zhang
,
L.
Sun
, and
H.
Ghassemi
, “
Hydrodynamic analysis of three oscillating hydrofoils with wing-in-ground effect on power extraction performance
,”
Ocean Eng.
246
,
110642
(
2022
).
308.
W.
Mo
,
G.
HE
,
J.
Wang
,
Z.
Zhang
,
J.
Wang
,
P.
Liu
,
H.
Ghassemi
, and
H.
Yang
, “
Hydrodynamic characteristics of wing-in-ground effect oscillating hydrofoil on power extraction performance
,” available at https://ssrn.com/abstract=4312767 (published online
2022
).
309.
W.
Mo
,
G.
He
,
H.
Ghassemi
,
H.
Yang
, and
W.
Mao
, “
Wake vortex structures and hydrodynamics performance of a power-extraction flapping hydrofoil
,”
Phys. Fluids
35
,
025105
(
2023
).
310.
J.
Wu
,
S. C.
Yang
,
C.
Shu
,
N.
Zhao
, and
W. W.
Yan
, “
Ground effect on the power extraction performance of a flapping wing biomimetic energy generator
,”
J. Fluids Struct.
54
,
247
(
2015
).
311.
J.
Molina
and
X.
Zhang
, “
Aerodynamics of a heaving airfoil in ground effect
,”
AIAA J.
49
,
1168
(
2011
).
312.
Y.
Li
,
Z.
Pan
, and
N.
Zhang
, “
Numerical analysis on the propulsive performance of oscillating wing in ground effect
,”
Appl. Ocean Res.
114
,
102772
(
2021
).
313.
L.
Mei
,
W.
Yan
,
J.
Zhou
, and
W.
Shi
, “
Thrust enhancement of DTMB 5415 with elastic flapping foil in regular head waves
,”
J. Mar. Sci. Eng.
11
,
632
(
2023
).
314.
D. E.
Anevlavi
,
E. S.
Filippas
,
A. E.
Karperaki
, and
K. A.
Belibassakis
, “
A non-linear BEM–FEM coupled scheme for the performance of flexible flapping-foil thrusters
,”
J. Mar. Sci. Eng.
8
,
56
(
2020
).
315.
A. K.
Priovolos
,
E. S.
Filippas
, and
K. A.
Belibassakis
, “
A vortex-based method for improved flexible flapping-foil thruster performance
,”
Eng. Anal. Boundary Elem.
95
,
69
(
2018
).
316.
H.
Vijayakumaran
and
P.
Krishnankutty
, “
Computational fluid dynamics study of a flexible flapping hydrofoil propulsor
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2016
).
317.
S.
Bi
and
Y.
Cai
, “
Effect of spanwise flexibility on propulsion performance of a flapping hydrofoil at low Reynolds number
,”
Chin. J. Mech. Eng.
25
,
12
(
2012
).
318.
S. E.
Spagnolie
,
L.
Moret
,
M. J.
Shelley
, and
J.
Zhang
, “
Surprising behaviors in flapping locomotion with passive pitching
,”
Phys. Fluids
22
,
041903
(
2010
).
319.
S.
Michelin
and
S. G.
Llewellyn Smith
, “
Resonance and propulsion performance of a heaving flexible wing
,”
Phys. Fluids
21
,
071902
(
2009
).
320.
B.
Thiria
and
R.
Godoy-Diana
, “
How wing compliance drives the efficiency of self-propelled flapping flyers
,”
Phys. Rev. E
82
,
015303
(
2010
).
321.
S.
Ramananarivo
,
R.
Godoy-Diana
, and
B.
Thiria
, “
Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
5964
(
2011
).
322.
R.
Hua
,
L.
Zhu
, and
X.
Lu
, “
Locomotion of a flapping flexible plate
,”
Phys. Fluids
25
,
121901
(
2013
).
323.
P. D.
Yeh
and
A.
Alexeev
, “
Free swimming of an elastic plate plunging at low Reynolds number
,”
Phys. Fluids
26
,
053604
(
2014
).
324.
B.
Yin
and
H.
Luo
, “
Effect of wing inertia on hovering performance of flexible flapping wings
,”
Phys. Fluids
22
,
111902
(
2010
).
325.
T.
Yang
,
M.
Wei
, and
H.
Zhao
, “
Numerical study of flexible flapping wing propulsion
,”
AIAA J.
48
,
2909
(
2010
).
326.
W. B.
Tay
and
K. B.
Lim
, “
Numerical analysis of active chordwise flexibility on the performance of non-symmetrical flapping airfoils
,”
J. Fluids Struct.
26
,
74
(
2010
).
327.
J.
Xing
and
L.
Yang
, “
Wave devouring propulsion: An overview of flapping foil propulsion technology
,”
Renewable Sustainable Energy Rev.
184
,
113589
(
2023
).
328.
C.
Hoke
, “
Investigation of flapping foil efficiency using active deformation and in near-Wall effects
,” Doctoral thesis (
UNSW Sydney
,
2021
).
329.
C.
Wang
,
H.
Tang
, and
X.
Zhang
, “
Fluid-structure interaction of bio-inspired flexible slender structures: A review of selected topics
,”
Bioinspiration Biomimetics
17
,
041002
(
2022
).
330.
P.
Liu
,
Y.
Liu
,
S.
Huang
,
J.
Zhao
, and
Y.
Su
, “
Effects of regular waves on propulsion performance of flexible flapping foil
,”
Appl. Sci.
8
,
934
(
2018
).
331.
J. A.
Bowker
,
N. C.
Townsend
,
M.
Tan
, and
R. A.
Shenoi
, “
Experimental analysis of submerged flapping foils; implications for autonomous surface vehicles (ASVs)
,” in
OCEANS 2016 MTS/IEEE Monterey
(
IEEE
,
2016
).
332.
J. A.
Bowker
, “
Coupled dynamics of a flapping foil wave powered vessel
,“ Doctoral thesis (
University of Southampton
,
2018
).
333.
S.
Huang
,
T.
Wu
,
Y.
Hsu
,
J.
Guo
,
J.
Tsai
, and
F.
Chiu
, “
Effective energy-saving device of eco-ship by using wave propulsion
,” in
2016 Techno-Ocean (Techno-Ocean)
(
IEEE
,
2016
).
334.
H.
Linden
, ”
Improved combination with floating bodies, of fins adapted to effect their propulsion
,“ GB patent 189514630A (18 July
1895
).
335.
W. W.
Phares
, “
Vibrating propeller
,” U.S. patent 706198A (5 August 1902).
336.
O.
Schulze
, “
Wave motor
,” U.S. patent 1033476A (23 July 1912).
337.
A.
Anon
, “
Wave power for ship propulsion
,”
Motor Ship
64
,
757
(
1935
).
338.
I.
Glendenning
, “
Ocean wave power
,”
Appl. Energy.
3
,
197
(
1977
).
339.
G.
Gause
, “
Mr. Gause's incredible self-propelled boat!
,”
Mechanix Illustrated
(
Fawcett
1972
).
340.
E.
Jakobsen
, “
The foil propeller wave power for propulsion
,” in
Proceedings of the 2nd International Symposium on Wave Tidal Energy
(
1981
).
341.
K.
Dybdahl
, “
Foilpropellen kan revolusjonere skipsfarten
,”
Tek. Ukebl.
135
,
39
(
1988
).
342.
M.
Nikolaev
,
A.
Savitskiy
, and
Y.
Senkin
, “
Basics of calculation of the efficiency of a ship with propulsor of the wing type
,”
Sudostroenie
4
,
7
(
1995
).
343.
Y.
Terao
and
H.
Isshiki
, “
Wave devouring propulsion sea trial
,” in
Eighteenth Symposium on Naval Hydrodynamics
(
1991
).
344.
R.
Knoller
, “
Die gesetze des luftwiderstandes
,”
Flugtech. Motortechnik
3
,
21
(
1909
).
345.
A.
Betz
, “
Ein beitrag zur erklarung des segelfluges
,”
Z. Flugtech. Motorluftschiffahrt
3
,
269
(
1912
).
346.
D.
Jallas
,
O.
Marquet
, and
D.
Fabre
, “
Linear and nonlinear perturbation analysis of the symmetry breaking in time-periodic propulsive wakes
,”
Phys. Rev. E
95
,
063111
(
2017
).
You do not currently have access to this content.