Dynamic features of a cavitating venturi have been a topic of investigation for the past few decades. This review presents state-of-the-art of experimental and numerical studies in cavitating venturi to address the challenges in understanding flow behavior and developing reliable numerical models. Many experimental studies have shown that two strongly coupled mechanisms, namely, Re-entrant Jet and the bubbly shock influence the cavitation zone behavior. We provide pointers from the past and recent studies to the influence of geometry and operating conditions, introducing changes in cavity oscillation. From an operational viewpoint, the modeling studies need to predict four crucial parameters related to its steady and dynamic operation: choked mass flow rate, operating pressure ratio range, cavitation length, and frequency of cavity oscillations. In this paper, we discuss the possible ways to properly configure a one-dimensional (1D) model, which can be a handy tool for extracting the key integral parameters. Realistic predictions require direct numerical simulations, which is not always an economically viable option. Recent three-dimensional (3D) simulations with compressible formulations for flow field and a cavitation model coupled with large eddy simulations to handle turbulence have achieved some success in predictions. Many simplified approaches have been popular. In this paper, we systematically bring out the predictability limits of popularly used mixture models coupled with cavitation and turbulence in more commonly studied two-dimensional (2D) and fewer three-dimensional geometries. Two-fluid models could provide answers, but further studies are required to mitigate the modeling challenges and to enable realistic predictions of the steady and dynamic features of this elegant flow control device for a chosen application.

1.
P. R.
Gogate
and
A. M.
Kabadi
, “
A review of applications of cavitation in biochemical engineering/biotechnology
,”
Biochem. Eng. J.
44
,
60
72
(
2009
).
2.
H.
Soyama
and
J.
Hoshino
, “
Enhancing the aggressive intensity of hydrodynamic cavitation through a venturi tube by increasing the pressure in the region where the bubbles collapse
,”
AIP Adv.
6
,
045113
(
2016
).
3.
C. E.
Brennen
, “
Cavitation in medicine
,”
Interface Focus
5
,
20150022
(
2015
).
4.
L. N.
Randall
, “
Rocket applications of the cavitating venturi
,”
J. Am. Rocket Soc.
22
,
28
31
(
1952
).
5.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2013
), Chap. 2, pp.
49
80
.
6.
S. M.
Ashrafizadeh
and
H.
Ghassemi
, “
Experimental and numerical investigation on the performance of small-sized cavitating venturis
,”
Flow Meas. Instrum.
42
,
6
15
(
2015
).
7.
J.
Zhu
,
S.
Wang
, and
X.
Zhang
, “
Influences of thermal effects on cavitation dynamics in liquid nitrogen through venturi tube
,”
Phys. Fluids
32
,
012105
(
2020
).
8.
P.
Rudolf
,
M.
Hudec
,
M.
Gríger
, and
D.
Štefan
, “
Characterization of the cavitating flow in converging-diverging nozzle based on experimental investigations
,” in
EPJ Web of Conferences
(
EDP Sciences
,
2014
), Vol.
67
, p.
02101
.
9.
P.
Tomov
,
A.
Danlos
,
S.
Khelladi
,
F.
Ravelet
,
C.
Sarraf
, and
F.
Bakir
, “
Pod study of aerated cavitation in a venturi nozzle
,”
J. Phys. Conf. Ser.
656
,
012171
(
2015
).
10.
D.
Harvey
, “
Throttling venturi valves for liquid rocket engines
,” in
6th Propulsion Joint Specialist Conference
(American Institute of Aeronautics and Astronautics,
1970
), pp.
70
703
.
11.
I. Y.
Chen
,
S. G.
Liou
, and
J. S.
Sheu
, “
Small cavitating venturi performance characteristics at low inlet subcooling
,”
J. Thermophys. Heat Transfer
12
,
602
605
(
1998
).
12.
A. M.
Abdulaziz
, “
Performance and image analysis of a cavitating process in a small type venturi
,”
Exp. Therm. Fluid Sci.
53
,
40
48
(
2014
).
13.
H.
Ghassemi
and
H. F.
Fasih
, “
Application of small size cavitating venturi as flow controller and flow meter
,”
Flow Meas. Instrum.
22
,
406
412
(
2011
).
14.
H.
Tian
,
P.
Zeng
,
N.
Yu
, and
G.
Cai
, “
Application of variable area cavitating venturi as a dynamic flow controller
,”
Flow Meas. Instrum.
38
,
21
26
(
2014
).
15.
X.
Long
,
J.
Zhang
,
J.
Wang
,
M.
Xu
,
Q.
Lyu
, and
B.
Ji
, “
Experimental investigation of the global cavitation dynamic behavior in a venturi tube with special emphasis on the cavity length variation
,”
Int. J. Multiphase Flow
89
,
290
298
(
2017
).
16.
L. R.
Iwanicki
and
O. W.
Dykema
, “
Effect of a cavitating venturi on wave propagation in a duct
,”
AIAA J.
2
,
753
755
(
1964
).
17.
A.
Vijayan
,
P.
Pradeep Kumar
, and
K.
Iyer
, “
Experimental study and numerical sizing model for cavitation zone characterisation in cavitating venturis
,”
Sādhanā
48
,
82
(
2023
).
18.
J.
Cui
,
H.
Lai
,
K.
Feng
, and
Y.
Ma
, “
Quantitative analysis of the minor deviations in nozzle internal geometry effect on the cavitating flow
,”
Exp. Therm. Fluid Sci.
94
,
89
98
(
2018
).
19.
P.
Zeng
,
H.
Tian
,
N.
Yu
, and
G.
Cai
, “
Numerical simulation on flow in the variable area cavitating venturi
,” AIAA Paper No. 2013-4072,
2013
.
20.
J. L.
Mena
,
M. A.
Ingle
,
V.
Shirsat
, and
A.
Choudhuri
, “
An investigation of a cavitating venturi flow control feature in a cryogenic propellant delivery system
,”
Flow Meas. Instrum.
41
,
97
103
(
2015
).
21.
W.
Smith
,
G. L.
Atkinson
, and
F. G.
Hammitt
, “
Void fraction measurements in a cavitating venturi
,”
J. Basic Eng.
86
(
2
),
265
274
(
1964
).
22.
B.
Stutz
and
J.-L.
Reboud
, “
Measurements within unsteady cavitation
,”
Exp. Fluids
29
,
545
552
(
2000
).
23.
B.
Stutz
and
J.-L.
Reboud
, “
Two-phase flow structure of sheet cavitation
,”
Phys. Fluids
9
,
3678
3686
(
1997
).
24.
J.-L.
Reboud
,
B.
Stutz
, and
O.
Coutier-Delgosha
, “
Two phase flow structure of cavitation: Experiment and modelling of unsteady effects
,” in
3rd International Symposium on Cavitation CAV1998
,
Grenoble, France
,
1998
, Vol.
26
, pp.
1
8
, see http://cav2021.org/?page_id=124.
25.
H.
Ganesh
,
S. A.
Mäkiharju
, and
S. L.
Ceccio
, “
Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities
,”
J. Fluid Mech.
802
,
37
78
(
2016
).
26.
S.
Gopalan
and
J.
Katz
, “
Flow structure and modeling issues in the closure region of attached cavitation
,”
Phys. Fluids
12
,
895
911
(
2000
).
27.
S.
Jahangir
,
E. C.
Wagner
,
R. F.
Mudde
, and
C.
Poelma
, “
Void fraction measurements in partial cavitation regimes by x-ray computed tomography
,”
Int. J. Multiphase Flow
120
,
103085
(
2019
).
28.
M.
Brunhart
,
C.
Soteriou
,
M.
Gavaises
,
I.
Karathanassis
,
P.
Koukouvinis
,
S.
Jahangir
, and
C.
Poelma
, “
Investigation of cavitation and vapor shedding mechanisms in a venturi nozzle
,”
Phys. Fluids
32
,
083306
(
2020
).
29.
P. F.
Dunn
,
F. O.
Thomas
,
M. P.
Davis
, and
I. E.
Dorofeeva
, “
Experimental characterization of aviation-fuel cavitation
,”
Phys. Fluids
22
,
117102
(
2010
).
30.
S.
Barre
,
J.
Rolland
,
G.
Boitel
,
E.
Goncalves
, and
R. F.
Patella
, “
Experiments and modeling of cavitating flows in venturi: Attached sheet cavitation
,”
Eur. J. Mech. B
28
,
444
464
(
2009
).
31.
A.
Dash
,
S.
Jahangir
, and
C.
Poelma
, “
Direct comparison of shadowgraphy and x-ray imaging for void fraction determination
,”
Meas. Sci. Technol.
29
,
125303
(
2018
).
32.
F. G.
Hammitt
,
P. T.
Chu
,
V.
Cramer
,
A.
Travers
, and
C.
Wakamo
,
Fluid Dynamic Performance of Cavitating Venturi Part II
(
The University of Michigan
,
1960
).
33.
B.
Stutz
and
S.
Legoupil
, “
X-ray measurements within unsteady cavitation
,”
Exp. Fluids
35
,
130
138
(
2003
).
34.
W.
Hogendoorn
, “
Experimental investigation of cavitation regimes in a converging-diverging nozzle
,” Ph.D. thesis (
Delft University of Technology
,
2017
).
35.
H.
Sayyaadi
, “
Instability of the cavitating flow in a venturi reactor
,”
Fluid Dyn. Res.
42
,
055503
(
2010
).
36.
K.
Sato
,
Y.
Taguchi
, and
S.
Hayashi
, “
High speed observation of periodic cavity behavior in a convergent-divergent nozzle for cavitating water jet
,”
J. Flow Control Meas. Instum.
1
,
102
(
2013
).
37.
S.
Jahangir
,
W.
Hogendoorn
, and
C.
Poelma
, “
Dynamics of partial cavitation in an axisymmetric converging-diverging nozzle
,”
Int. J. Multiphase Flow
106
,
34
45
(
2018
).
38.
J.
Wang
,
L.
Wang
,
S.
Xu
,
B.
Ji
, and
X.
Long
, “
Experimental investigation on the cavitation performance in a venturi reactor with special emphasis on the choking flow
,”
Exp. Therm. Fluid Sci.
106
,
215
225
(
2019
).
39.
Y.
Liu
,
H.
Fan
,
D.
Wu
,
H.
Chen
,
K.
Feng
,
C.
Zhao
, and
D.
Wu
, “
Experimental investigation of the dynamic cavitation behavior and wall static pressure characteristics through convergence-divergence venturis with various divergence angles
,”
Sci. Rep.
10
,
14172
(
2020
).
40.
C.
Wang
,
B.
Huang
,
G.
Wang
,
M.
Zhang
, and
N.
Ding
, “
Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation
,”
Int. J. Heat Mass Transfer
114
,
769
785
(
2017
).
41.
M.
Dular
,
I.
Khlifa
,
S.
Fuzier
,
M. A.
Maiga
, and
O.
Coutier-Delgosha
, “
Scale effect on unsteady cloud cavitation
,”
Exp. Fluids
53
,
1233
1250
(
2012
).
42.
K.
Croci
,
P.
Tomov
,
F.
Ravelet
,
A.
Danlos
,
S.
Khelladi
, and
J.-C.
Robinet
, “
Investigation of two mechanisms governing cloud cavitation shedding: Experimental study and numerical highlight
,” in
ASME 2016 International Mechanical Engineering Congress and Exposition
(
American Society of Mechanical Engineers
,
2016
), pp.
V007T09A001
.
43.
H.
Zhang
,
Z.
Zuo
,
K. A.
Mørch
, and
S.
Liu
, “
Thermodynamic effects on venturi cavitation characteristics
,”
Phys. Fluids
31
,
097107
(
2019
).
44.
K.
Sato
,
Y.
Wada
,
Y.
Noto
, and
Y.
Sugimoto
, “
Reentrant motion in cloud cavitation due to cloud collapse and pressure wave propagation
,” in
Proceedings of ASME
(
American Society of Mechanical Engineers
,
2010
), pp.
7
11
.
45.
S.
Hayashi
and
K.
Sato
, “
Unsteady behavior of cavitating waterjet in an axisymmetric convergent-divergent nozzle: High speed observation and image analysis based on frame difference method
,”
J. Flow Control Meas. Instum.
02
,
94
(
2014
).
46.
A.
Danlos
,
F.
Ravelet
,
O.
Coutier-Delgosha
, and
F.
Bakir
, “
Cavitation regime detection through proper orthogonal decomposition: Dynamics analysis of the sheet cavity on a grooved convergent–divergent nozzle
,”
Int. J. Heat Fluid Flow
47
,
9
20
(
2014
).
47.
M.
Callenaere
,
J.-P.
Franc
,
J.-M.
Michel
, and
M.
Riondet
, “
The cavitation instability induced by the development of a re-entrant jet
,”
J. Fluid Mech.
444
,
223
256
(
2001
).
48.
R. E. A.
Arndt
,
C. C. S.
Song
,
M.
Kjeldsen
,
J.
He
, and
A.
Keller
,
Instability of Partial Cavitation: A Numerical/Experimental Approach
(
National Academies Press
,
2000
).
49.
L.
Quang
,
J.-P.
Franc
, and
J.-M.
Michel
, “
Partial cavities: Global behavior and mean pressure distribution
,”
J. Fluids Eng.
115
,
243
248
(
1993
).
50.
P.
Tomov
,
S.
Khelladi
,
F.
Ravelet
,
C.
Sarraf
,
F.
Bakir
, and
P.
Vertenoeuil
, “
Experimental study of aerated cavitation in a horizontal venturi nozzle
,”
Exp. Therm. Fluid Sci.
70
,
85
95
(
2016
).
51.
J.
Kozák
,
P.
Rudolf
,
R.
Huzlík
,
M.
Hudec
,
R.
Chovanec
,
O.
Urban
,
B.
Maršálek
,
E.
Maršálková
,
F.
Pochylỳ
, and
D.
Štefan
, “
Transition of cavitating flow to supercavitation within venturi nozzle–hysteresis investigation
,” in
EPJ Web of Conferences
(
EDP Sciences
,
2017
), Vol.
143
, p.
02055
.
52.
J.
Zhu
,
H.
Xie
,
K.
Feng
,
X.
Zhang
, and
M.
Si
, “
Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube
,”
Int. J. Heat Mass Transfer
112
,
544
552
(
2017
).
53.
C.
Xu
,
S. D.
Heister
, and
R.
Field
, “
Modeling cavitating venturi flows
,”
J. Propul. Power
18
,
1227
1234
(
2002
).
54.
B.
Stutz
and
J.-L.
Reboud
, “
Experiments on unsteady cavitation
,”
Exp. Fluids
22
,
191
198
(
1997
).
55.
G.
Chen
,
G.
Wang
,
C.
Hu
,
B.
Huang
,
Y.
Gao
, and
M.
Zhang
, “
Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel
,”
Int. J. Multiphase Flow
72
,
133
140
(
2015
).
56.
R. T.
Knapp
, “
Recent investigations of the mechanics of cavitation and cavitation damage
,”
Trans. ASME
77
,
1045
1054
(
1955
).
57.
Y.
Kawanami
,
H.
Kato
,
H.
Yamaguchi
,
M.
Tanimura
, and
Y.
Tagaya
, “
Mechanism and control of cloud cavitation
,”
J. Fluids Eng.
119
,
788
794
(
1997
).
58.
T.
Pham
,
F.
Larrarte
, and
D.
Fruman
, “
Investigation of unsteady sheet cavitation and cloud cavitation mechanisms
,”
J. Fluids Eng.
121
,
289
296
(
1999
).
59.
K.
Sato
,
M.
Tanada
,
S.
Monden
, and
Y.
Tsujimoto
, “
Observations of oscillating cavitation on a flat plate hydrofoil
,”
JSME Int. J., Ser. B
45
,
646
654
(
2002
).
60.
S. C.
Li
,
Y. L.
Wu
,
J.
Dai
,
Z. G.
Zuo
, and
S.
Li
, “
Cavitation resonance: The phenomenon and unknown
,”
J. Hydrodyn. Ser. B
18
,
356
362
(
2006
).
61.
F. G.
Hammitt
,
P. T.
Chu
,
V. F.
Cramer
, and
C. L.
Wakamo
,
Observations and Measurements of Flow in a Cavitating Venturi
(
The University of Michigan
,
1962
).
62.
A. J.
Schmidt
, “
Quantitative measurement and flow visualization of water cavitation in a converging-diverging nozzle
,” Ph.D. thesis (
Kansas State University
,
2016
).
63.
T.
Toma
,
K.
Yoshino
, and
S.
Morioka
, “
Fluctuation characteristics of bubbly liquid flow in converging-diverging nozzle
,”
Fluid Dyn. Res.
2
,
217
(
1988
).
64.
A.
Sou
,
S.
Hosokawa
, and
A.
Tomiyama
, “
Effects of cavitation in a nozzle on liquid jet atomization
,”
Int. J. Heat Mass Transfer
50
,
3575
3582
(
2007
).
65.
A.
Wei
,
L.
Yu
,
R.
Gao
,
W.
Zhang
, and
X.
Zhang
, “
Unsteady cloud cavitation mechanisms of liquid nitrogen in convergent–divergent nozzle
,”
Phys. Fluids
33
,
092116
(
2021
).
66.
I.
Khlifa
,
A.
Vabre
,
M.
Hočevar
,
K.
Fezzaa
,
S.
Fuzier
,
O.
Roussette
, and
O.
Coutier-Delgosha
, “
Fast x-ray imaging of cavitating flows
,”
Exp. Fluids
58
,
157
(
2017
).
67.
V.
Aeschlimann
,
S.
Barre
, and
H.
Djeridi
, “
Unsteady cavitation analysis using phase averaging and conditional approaches in a 2D venturi flow
,”
Open J. Fluid Dyn.
3
,
37041
(
2013
).
68.
Y.
Saito
and
K.
Sato
, “
Bubble collapse propagation and pressure wave at periodic cloud cavitation
,” in
Proceedings of 6th International Conference on Multiphase Flow, ICMF 2007
(
2007
).
69.
M. P.
Davis
,
P. F.
Dunn
, and
F. O.
Thomas
, “
Jet fuel cavitation in a converging diverging nozzle
,” in
ASME/JSME 2007 5th Joint Fluids Engineering Conference
(
American Society of Mechanical Engineers
,
2007
), pp.
385
390
.
70.
T.
Chen
,
H.
Chen
,
W.
Liang
,
B.
Huang
, and
L.
Xiang
, “
Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition
,”
Int. J. Heat Mass Transfer
132
,
618
630
(
2019
).
71.
S.
Cruz
,
F. A.
Godínez
, and
M.
Navarrete
, “
Study of a cavitating venturi tube by lumped parameters
,”
J. Fluids Eng.
141
,
071304
(
2019
).
72.
J.
Kozák
,
P.
Rudolf
,
D.
Štefan
,
M.
Hudec
, and
M.
Gríger
, “
Analysis of pressure pulsations of cavitating flow in converging-diverging nozzle
,” in
Sixth IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
,
Ljubljana, Slovenia
(International Association for Hydro-Environment Engineering and Research, 2015), pp.
9
11
.
73.
S.
Xu
,
X.
Long
,
J.
Wang
,
H.
Cheng
, and
Z.
Zhang
, “
Experiment on flow dynamics and cavitation structure in an axisymmetric venturi tube based on x-t diagrams and proper orthogonal decomposition
,”
Exp. Therm. Fluid Sci.
136
,
110648
(
2022
).
74.
A.
Vijayan
and
P.
Pradeep Kumar
, “
Experimental characterization of cavitation zone and cavity oscillation mechanism transitions in planar cavitating venturis
,”
Phys. Fluids
35
,
083331
(
2023
).
75.
R. A.
Furness
and
S. P.
Hutton
, “
Experimental and theoretical studies of two-dimensional fixed-type cavities
,”
J. Fluids Eng.
97
,
515
521
(
1975
).
76.
P. A.
Lush
and
S. R.
Skipp
, “
High speed cine observations of cavitating flow in a duct
,”
Int. J. Heat Fluid Flow
7
,
283
290
(
1986
).
77.
K.
Long
,
M.
Ge
,
A.-C.
Bayeul-Lainé
, and
O.
Coutier-Delgosha
, “
Analysis of the cavitation instabilities with time-resolved stereo and multiplane particle image velocimetry
,”
Phys. Fluids
34
,
123323
(
2022
).
78.
G.
Zhang
,
D.
Zhang
,
M.
Ge
,
M.
Petkovšek
, and
O.
Coutier-Delgosha
, “
Experimental investigation of three distinct mechanisms for the transition from sheet to cloud cavitation
,”
Int. J. Heat Mass Transfer
197
,
123372
(
2022
).
79.
K.
Sato
,
Y.
Saito
, and
H.
Nakamura
, “
Self-exciting behavior of cloud-like cavitation and micro-vortex cavities on the shear layer
,”
Ret
2
,
105
(
2001
), available at https://wwwr.kanazawa-it.ac.jp/flab/database/paper/2001_AFI%20E13060.pdf.
80.
K.
Sato
and
S.
Shimojo
, “
Detailed observations on a starting mechanism for shedding of cavitation cloud
,” in
Proceedings of 5th International Symposium on Cavitation, CAV 2003
(Osaka University, Engineering Science, 2003), Vol.
11
, p.
12
.
81.
K.
Sato
,
S.
Shimojo
, and
J.
Watanabe
, “
Observations of chain-reaction behavior at bubble collapse using ultra high speed video camera
,”
Fluids Eng. Div. Summer Meet.
36975
,
1347
1352
(
2003
).
82.
X.
Wu
,
E.
Maheux
, and
G. L.
Chahine
, “
An experimental study of sheet to cloud cavitation
,”
Exp. Therm. Fluid Sci.
83
,
129
140
(
2017
).
83.
S.
Brinkhorst
,
E.
von Lavante
, and
G.
Wendt
, “
Experimental and numerical investigation of the cavitation-induced choked flow in a Herschel venturi-tube
,”
Flow Meas. Instrum.
54
,
56
67
(
2017
).
84.
S.
Xu
,
J.
Wang
,
H.
Cheng
,
B.
Ji
, and
X.
Long
, “
Experimental study of the cavitation noise and vibration induced by the choked flow in a venturi reactor
,”
Ultrason. Sonochem.
67
,
105183
(
2020
).
85.
P. K.
Ullas
,
D.
Chatterjee
, and
S.
Vengadesan
, “
Experimental study on the effect of throat length in the dynamics of internal unsteady cavitating flow
,”
Phys. Fluids
35
,
023332
(
2023
).
86.
J.
Hord
,
L. M.
Anderson
, and
W. J.
Hall
,
Cavitation in Liquid Cryogens. 1: Venturi
(
National Aeronautics and Space Administration
,
1972
).
87.
K.
Berman
and
T. C.
Carnavos
, “
Some experiments with two-dimensional cavitating venturis
,”
J. Jet Propul.
27
,
148
150
(
1957
).
88.
89.
K.
Sato
and
Y.
Saito
, “
High-speed video observation on mechanism of re-entrant motion and cloud shedding in cloud cavitation
,” in
The 5th International Symposium on Measurement Techniques for Multiphase Flow Macau, II
(
2006
), pp.
1089
1093
, available at https://wwwr.kanazawa-it.ac.jp/flab/database/paper/2006_ISMTMFPaper108.pdf.
90.
W.
Jian
,
M.
Petkovšek
,
L.
Houlin
,
B.
Širok
, and
M.
Dular
, “
Combined numerical and experimental investigation of the cavitation erosion process
,”
J. Fluids Eng.
137
,
051302
(
2015
).
91.
H.
Shi
,
M.
Li
,
P.
Nikrityuk
, and
Q.
Liu
, “
Experimental and numerical study of cavitation flows in venturi tubes: From CFD to an empirical model
,”
Chem. Eng. Sci.
207
,
672
687
(
2019
).
92.
K.
Long
,
O.
Coutier-Delgosha
, and
A.-C.
Bayeul-Lainé
, “
Experimental investigation of three-dimensional effects in cavitating flows with time-resolved stereo particle image velocimetry
,”
Phys. Fluids
35
,
023324
(
2023
).
93.
N.
Dutta
,
P.
Kopparthi
,
A. K.
Mukherjee
,
N.
Nirmalkar
, and
G.
Boczkaj
, “
Novel strategies to enhance hydrodynamic cavitation in a circular venturi using rans numerical simulations
,”
Water Res.
204
,
117559
(
2021
).
94.
J. A.
Venning
,
B. W.
Pearce
, and
P. A.
Brandner
, “
Nucleation effects on cloud cavitation about a hydrofoil
,”
J. Fluid Mech.
947
,
A1
(
2022
).
95.
X.
Zhang
,
D.
Wang
,
R.
Liao
,
H.
Zhao
, and
B.
Shi
, “
Study of mechanical choked venturi nozzles used for liquid flow controlling
,”
Flow Meas. Instrum.
65
,
158
165
(
2019
).
96.
J.
Hardgrove
and
H.
Krieg, JR
, “
High performance throttling and pulsing rocket engine
,” in
20th Joint Propulsion Conference
(American Institute of Aeronautics and Astronautics, 1984), p.
1254
.
97.
W.
Yoon
,
H.
Yoon
,
J.
Ahn
, and
K.
Ahn
, “
Flow measurement and instrumentation flow control characteristics of throttling venturi valve with adjustable area
,”
Flow Meas. Instrum.
81
,
102034
(
2021
).
98.
Y.
Tao
,
W.
Jiping
, and
W.
Zhenguo
, “
Design and application of throttling venturi for cryogenic propellants in tripropellant rocket engine
,” AIAA Paper No. 2006-4883,
2006
.
99.
A.
Ruffin
,
F.
Barato
,
E.
Paccagnella
, and
D.
Pavarin
, “
Development of a flow control valve for a throttleable hybrid rocket motor and throttling fire tests
,” in
2018 Joint Propulsion Conference
(American Institute of Aeronautics and Astronautics, 2018), p.
4664
.
100.
J.
Ishimoto
,
M.
Onishi
, and
K.
Kamijo
, “
Numerical and experimental study on the cavitating flow characteristics of pressurized liquid nitrogen in a horizontal rectangular nozzle
,”
J. Press. Vessel Technol.
127
,
515
524
(
2005
).
101.
J.-P.
Franc
, “
Physics and control of cavitation
,”
Technical Report No. RT-EN-AVT-143
(
University of Grenoble
,
France
,
2006
).
102.
M. S.
Plesset
and
S. A.
Zwick
, “
A nonsteady heat diffusion problem with spherical symmetry
,”
J. Appl. Phys.
23
,
95
98
(
1952
).
103.
J.-P.
Franc
,
C.
Rebattet
, and
A.
Coulon
, “
An experimental investigation of thermal effects in a cavitating inducer
,”
J. Fluids Eng.
126
,
716
723
(
2004
).
104.
Z.
Zuo
,
H.
Zhang
,
Z.
Ren
,
H.
Chen
, and
S.
Liu
, “
Thermodynamic effects at venturi cavitation in different liquids
,”
Phys. Fluids
34
,
083310
(
2022
).
105.
A. K.
Singhal
,
M. M.
Athavale
,
H.
Li
, and
Y.
Jiang
, “
Mathematical basis and validation of the full cavitation model
,”
J. Fluids Eng.
124
,
617
624
(
2002
).
106.
A.
Wei
,
L.
Yu
,
L.
Qiu
, and
X.
Zhang
, “
Cavitation in cryogenic fluids: A critical research review
,”
Phys. Fluids
34
,
101303
(
2022
).
107.
R. J.
Simoneau
and
R. C.
Hendricks
,
Two-Phase Choked Flow of Cryogenic Fluids in Converging-Diverging Nozzles
(
National Aeronautics and Space Administration
,
1979
).
108.
N.
Tani
and
T.
Nagashima
, “
Cryogenic cavitating flow in 2D laval nozzle
,”
J. Therm. Sci.
12
,
157
161
(
2003
).
109.
M.
Dular
and
M.
Petkovšek
, “
Cavitation erosion in liquid nitrogen
,”
Wear
400–401
,
111
118
(
2018
).
110.
H.
Zhang
,
Z.
Zuo
, and
S.
Liu
, “
Influence of dissolved gas content on venturi cavitation at thermally sensitive conditions
,” in
Tenth International Symposium on Cavitation (CAV2018)
(American Society for Mechanical Engineers, 2018), pp.
546
550
.
111.
K.
Ohira
,
T.
Nakayama
, and
T.
Nagai
, “
Cavitation flow instability of subcooled liquid nitrogen in converging–diverging nozzles
,”
Cryogenics
52
,
35
44
(
2012
).
112.
L. R.
Sarosdy
and
A. J.
Acosta
, “
Note on observations of cavitation in different fluids
,”
Trans. ASME
83
,
399
400
(
1961
).
113.
L.
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
34
,
94
98
(
1917
).
114.
M. S.
Plesset
, “
The dynamics of cavitation bubbles
,”
J. Appl. Mech.
16
,
277
282
(
1949
).
115.
A.
Prosperetti
, “
Nonlinear oscillations of gas bubbles in liquids: Steady-state solutions
,”
J. Acoust. Soc. Am.
56
,
878
885
(
1974
).
116.
Y.-C.
Wang
and
C. E.
Brennen
, “
One-dimensional bubbly cavitating flows through a converging-diverging nozzle
,”
J. Fluids Eng.
120
,
166
170
(
1998
).
117.
C. F.
Delale
,
G. H.
Schnerr
, and
J.
Sauer
, “
Quasi-one-dimensional steady-state cavitating nozzle flows
,”
J. Fluid Mech.
427
,
167
204
(
2001
).
118.
M.
Minnaert
, “
On musical air-bubbles and the sounds of running water
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
16
,
235
248
(
1933
).
119.
R. B.
Chapman
and
M. S.
Plesset
, “
Thermal effects in the free oscillation of gas bubbles
,”
J. Basic Eng.
93
,
373
376
(
1971
).
120.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
121.
A.
Prosperetti
, “
Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids
,”
J. Acoust. Soc. Am.
61
,
17
27
(
1977
).
122.
A.
Prosperetti
,
L. A.
Crum
, and
K. W.
Commander
, “
Nonlinear bubble dynamics
,”
J. Acoust. Soc. Am.
83
,
502
514
(
1988
).
123.
A.
Prosperetti
and
M. S.
Plesset
, “
Vapour-bubble growth in a superheated liquid
,”
J. Fluid Mech.
85
,
349
368
(
1978
).
124.
A.
Prosperetti
, “
Bubble dynamics: A review and some recent results
,”
Appl. Sci. Res.
38
,
145
164
(
1982
).
125.
F. R.
Gilmore
, “
The growth or collapse of a spherical bubble in a viscous compressible liquid
,”
Report No. 26-4
(
California Institute of Technology, Hydrodynamics Laboratory
,
1952
).
126.
A.
Prosperetti
, “
A generalization of the Rayleigh–Plesset equation of bubble dynamics
,”
Phys. Fluids
25
,
409
410
(
1982
).
127.
K. N.
Shukla
, “
A generalization of the Rayleigh–Plesset equation of bubble dynamics
,”
Z. Angew. Math. Mech.
67
,
470
471
(
1987
).
128.
M. S.
Plesset
and
S. A.
Zwick
, “
The growth of vapor bubbles in superheated liquids
,”
J. Appl. Phys.
25
,
493
500
(
1954
).
129.
L. E.
Scriven
, “
On the dynamics of phase growth
,”
Chem. Eng. Sci.
10
,
1
13
(
1959
).
130.
T.
Wang
, “
Effects of evaporation and diffusion on an oscillating bubble
,”
Phys. Fluids
17
,
1121
1126
(
1974
).
131.
R.
Nigmatulin
,
N.
Khabeev
, and
F.
Nagiev
, “
Dynamics, heat and mass transfer of vapour-gas bubbles in a liquid
,”
Int. J. Heat Mass Transfer
24
,
1033
1044
(
1981
).
132.
S.
Zanje
,
K.
Iyer
,
J. S.
Murallidharan
,
H.
Punekar
, and
V. K.
Gupta
, “
Development of generalized bubble growth model for cavitation and flash boiling
,”
Phys. Fluids
33
,
077116
(
2021
).
133.
A.
Zhang
,
S.-M.
Li
,
P.
Cui
,
S.
Li
, and
Y.-L.
Liu
, “
A unified theory for bubble dynamics
,”
Phys. Fluids
35
,
033323
(
2023
).
134.
G. H.
Schnerr
and
J.
Sauer
, “
Physical and numerical modeling of unsteady cavitation dynamics
,” in
Fourth International Conference on Multiphase Flow
,
New Orleans, USA
(Elsevier, Lausanne, 2001), Vol.
1
.
135.
M.
Ishii
and
T.
Hibiki
,
Thermo-Fluid Dynamics of Two-Phase Flow
, 2nd ed. (
Springer Science & Business Media
,
2010
), Chap. 9, pp.
157
169
.
136.
R. F.
Tangren
,
C. H.
Dodge
, and
H. S.
Seifert
, “
Compressibility effects in two-phase flow
,”
J. Appl. Phys.
20
,
637
645
(
1949
).
137.
L.
Van Wijngaarden
, “
On the equations of motion for mixtures of liquid and gas bubbles
,”
J. Fluid Mech.
33
,
465
474
(
1968
).
138.
V. S.
Moholkar
and
A. B.
Pandit
, “
Numerical investigations in the behaviour of one-dimensional bubbly flow in hydrodynamic cavitation
,”
Chem. Eng. Sci.
56
,
1411
1418
(
2001
).
139.
A. I.
Eller
, “
Damping constants of pulsating bubbles
,”
J. Acoust. Soc. Am.
47
,
1469
1470
(
1970
).
140.
A. T.
Preston
,
T.
Colonius
, and
C. E.
Brennen
, “
A numerical investigation of unsteady bubbly cavitating nozzle flows
,”
Phys. Fluids
14
,
300
311
(
2002
).
141.
C.
Delale
,
Z.
Baskaya
,
S.
Schmidt
, and
G. H.
Schnerr
, “
Unsteady bubbly cavitating nozzle flows
,” in
CAV2009—7th International Symposium on Cavitation
,
Ann Arbor, MI
(University of Michigan, 2009).
142.
L. A.
Crum
and
A.
Prosperetti
, “
Erratum and comments on ‘Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results’ J. Acoust. Soc. Am. 73, 121–127 (1983)]
,”
J. Acoust. Soc. Am.
75
,
1910
1912
(
1984
).
143.
L.
d'Agostino
and
C. E.
Brennen
, “
Linearized dynamics of spherical bubble clouds
,”
J. Fluid Mech.
199
,
155
176
(
1989
).
144.
Y.-C.
Wang
and
E.
Chen
, “
Effects of phase relative motion on critical bubbly flows through a converging–diverging nozzle
,”
Phys. Fluids
14
,
3215
3223
(
2002
).
145.
G.
Dassie
and
M.
Reali
, “
Dynamics of an oscillating spherical gas/vapor bubble
,”
J. Acoust. Soc. Am.
100
,
3088
3097
(
1996
).
146.
A.
Preston
,
T.
Colonius
, and
C. E.
Brennen
, “
Reduced-order modeling of diffusive effects on the dynamics of bubbles
,” in
Fifth International Symposium on Cavitation (CAV2003)
(
2003
), p.
Cav03-GS-2-013
.
147.
Y.
Matsumoto
and
K.
Okita
, “
Multiscale analysis on cavitating flow
,” AIAA Paper No. 2011-4044,
2011
.
148.
A.
Kubota
,
H.
Kato
, and
H.
Yamaguchi
, “
A new modelling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section
,”
J. Fluid Mech.
240
,
59
96
(
1992
).
149.
A.
Prosperetti
, “
The thermal behaviour of oscillating gas bubbles
,”
J. Fluid Mech.
222
,
587
616
(
1991
).
150.
C. F.
Delale
,
G.
Schnerr
, and
S.
Pasinlioglu
, “
On the temporal stability of steady-state quasi-one-dimensional bubbly cavitating nozzle flow solutions
,” in
Proceedings of ICMF 2007—International Conference on Multiphase Flows
,
Leipzig, Germany
(
2007
).
151.
C. F.
Delale
, “
Thermal damping in cavitating nozzle flows
,”
J. Fluids Eng.
124
,
969
976
(
2002
).
152.
Z.
Qin
,
K.
Bremhorst
,
H.
Alehossein
, and
T.
Meyer
, “
Simulation of cavitation bubbles in a convergent–divergent nozzle water jet
,”
J. Fluid Mech.
573
,
1
25
(
2007
).
153.
C. F.
Delale
,
K.
Okita
, and
Y.
Matsumoto
, “
Steady-state cavitating nozzle flows with nucleation
,”
J. Fluids Eng.
127
,
770
777
(
2005
).
154.
R.
Ishii
,
Y.
Umeda
,
S.
Murata
, and
N.
Shishido
, “
Bubbly flows through a converging–diverging nozzle
,”
Phys. Fluids A
5
,
1630
1643
(
1993
).
155.
M. G.
Rodio
,
M. G.
De Giorgi
, and
A.
Ficarella
, “
Influence of convective heat transfer modeling on the estimation of thermal effects in cryogenic cavitating flows
,”
Int. J. Heat Mass Transfer
55
,
6538
6554
(
2012
).
156.
A.
Vijayan
,
V.
Premchand
,
P.
Pradeep Kumar
, and
K.
Nandakumar
, “
On the modelling of cavitating venturi
,” in
6th International and 43rd National Conference on Fluid Mechanics and Fluid Power
,
NIT Allahabad, India
, 15–17 December
2016
.
157.
D.
Albagli
and
A.
Gany
, “
High speed bubbly nozzle flow with heat, mass, and momentum interactions
,”
Int. J. Heat Mass Transfer
46
,
1993
2003
(
2003
).
158.
M.
Gaston
,
J.
Reizes
, and
G.
Evans
, “
Modelling of bubble dynamics in a venturi flow with a potential flow method
,”
Chem. Eng. Sci.
56
,
6427
6435
(
2001
).
159.
X-l
Yao
and
A-m
Zhang
, “
A numerical investigation of bubble dynamics based on the potential-flow theory
,”
J. Mar. Sci. Appl.
5
,
14
21
(
2006
).
160.
Y.
Chen
and
S. D.
Heister
, “
A numerical treatment for attached cavitation
,”
J. Fluids Eng.
116
,
613
618
(
1994
).
161.
J.
Ishimoto
and
K.
Kamijo
, “
Numerical simulation of cavitating flow of liquid helium in venturi channel
,”
Cryogenics
43
,
9
17
(
2003
).
162.
Y.
Chen
and
S. D.
Heister
, “
Modeling hydrodynamic nonequilibrium in cavitating flows
,”
J. Fluids Eng.
118
,
172
178
(
1996
).
163.
O.
Coutier-Delgosha
,
R.
Fortes-Patella
, and
J.-L.
Reboud
, “
Simulation of unsteady cavitation with a two-equation turbulence model including compressibility effects
,”
J. Turbul.
3
,
N58
65
(
2002
).
164.
O.
Coutier-Delgosha
,
R.
Fortes-Patella
, and
J.-L.
Reboud
, “
Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation
,”
J. Fluids Eng.
125
,
38
45
(
2003
).
165.
O.
Coutier-Delgosha
,
J.-L.
Reboud
, and
Y.
Delannoy
, “
Numerical simulation of the unsteady behaviour of cavitating flows
,”
Int. J. Numer. Methods Fluids
42
,
527
548
(
2003
).
166.
S.
Brinkhorst
,
E.
von Lavante
, and
G.
Wendt
, “
Numerical investigation of cavitating Herschel venturi-tubes applied to liquid flow metering
,”
Flow Meas. Instrum.
43
,
23
33
(
2015
).
167.
J.-L.
Reboud
,
O.
Coutier-Delgosha
,
B.
Pouffary
, and
R.
Fortes-Patella
, “
Numerical simulation of unsteady cavitating flows: Some applications and open problems
,” in Fifth International Symposium on Cavitation, Osaka, Japan, November 1–4, 2003, p. CAV2003-IL-10.
168.
P. J.
Zwart
,
A. G.
Gerber
, and
T.
Belamri
, “
A two-phase flow model for predicting cavitation dynamics
,” in Fifth International Conference on Multiphase Flow, Osaka, Japan, November 1–4, 2003 (ICMF, Tsukuba, Japan, 2004), Vol.
152
.
169.
S. M.
Ghiaasiaan
,
Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems
(
Cambridge University Press
,
2007
), Chap. 5.
170.
A.
Simpson
and
V. V.
Ranade
, “
Modeling hydrodynamic cavitation in venturi: Influence of venturi configuration on inception and extent of cavitation
,”
AIChE J.
65
,
421
433
(
2019
).
171.
G. G.
Dastane
,
H.
Thakkar
,
R.
Shah
,
S.
Perala
,
J.
Raut
, and
A.
Pandit
, “
Single and multiphase CFD simulations for designing cavitating venturi
,”
Chem. Eng. Res. Des.
149
,
1
12
(
2019
).
172.
Y.
Chen
and
S. D.
Heister
, “
Two-phase modeling of cavitated flows
,”
Comput. Fluids
24
,
799
809
(
1995
).
173.
D. P.
Schmidt
,
C. J.
Rutland
, and
M.
Corradini
, “
A numerical study of cavitating flow through various nozzle shapes
,”
SAE Trans.
106
,
1664
1673
(
1997
), available at http://www.jstor.org/stable/44730787.
174.
L.
Fang
,
W.
Li
,
Q.
Li
, and
Z.
Wang
, “
Numerical investigation of the cavity shedding mechanism in a venturi reactor
,”
Int. J. Heat Mass Transfer
156
,
119835
(
2020
).
175.
E.
Goncalves
and
R. F.
Patella
, “
Numerical simulation of cavitating flows with homogeneous models
,”
Comput. Fluids
38
,
1682
1696
(
2009
).
176.
E.
Goncalvès
and
R. F.
Patella
, “
Constraints on equation of state for cavitating flows with thermodynamic effects
,”
Appl. Math. Comput.
217
,
5095
5102
(
2011
).
177.
R. F.
Kunz
,
D. A.
Boger
,
T. S.
Chyczewski
,
D.
Stinebring
,
H.
Gibeling
, and
T. R.
Govindan
, “
Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies
,” in
Proceedings of the 3rd ASME-JSME Joint Fluids Engineering Conference
(
American Society of Mechanical Engineers
,
1999
), Vol.
99
.
178.
E.
Goncalves
, “
Modeling for non isothermal cavitation using 4-equation models
,”
Int. J. Heat Mass Transfer
76
,
247
262
(
2014
).
179.
B.
Charrière
and
E.
Goncalves
, “
Numerical investigation of periodic cavitation shedding in a venturi
,”
Int. J. Heat Fluid Flow
64
,
41
54
(
2017
).
180.
B.
Charrière
,
J.
Decaix
, and
E.
Goncalvès
, “
A comparative study of cavitation models in a venturi flow
,”
Eur. J. Mech. B
49
,
287
297
(
2015
).
181.
B.
Charriere
and
E.
Goncalves
, “
Numerical approach to reproduce instabilities of partial cavitation in a venturi 8ř geometry
,” in
IOP Conference Series: Earth and Environmental Science
(
IOP Publishing
,
2016
), Vol.
49
, p.
092001
.
182.
Y.
Chen
,
C-j
Lu
, and
L.
Wu
, “
Modelling and computation of unsteady turbulent cavitation flows
,”
J. Hydrodyn.
18
,
559
566
(
2006
).
183.
V.
Ahuja
,
A.
Hosangadi
, and
S.
Arunajatesan
, “
Simulations of cavitating flows using hybrid unstructured meshes
,”
J. Fluids Eng.
123
,
331
340
(
2001
).
184.
V.
Ahuja
,
A.
Hosangadi
, and
J.
Shipman
, “
Computational analyses of cavitating control elements in cryogenic environments
,” in
ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
(
American Society of Mechanical Engineers
,
2004
), pp.
633
645
.
185.
A.
Hosangadi
and
V.
Ahuja
, “
A new unsteady model for dense cloud cavitation in cryogenic fluids
,” AIAA Paper No. 2005-5347,
2005
.
186.
I.
Senocak
and
W.
Shyy
, “
Interfacial dynamics-based modelling of turbulent cavitating flows, Part-1: Model development and steady-state computations
,”
Int. J. Numer. Methods Fluids
44
,
975
995
(
2004
).
187.
I.
Senocak
and
W.
Shyy
, “
Interfacial dynamics-based modelling of turbulent cavitating flows, Part-2: Time-dependent computations
,”
Int. J. Numer. Methods Fluids
44
,
997
1016
(
2004
).
188.
A.
Gnanaskandan
and
K.
Mahesh
, “
Large eddy simulation of the transition from sheet to cloud cavitation over a wedge
,”
Int. J. Multiphase Flow
83
,
86
102
(
2016
).
189.
A.
Kumar
,
A.
Ghobadian
, and
J. M.
Nouri
, “
Assessment of cavitation models for compressible flows inside a nozzle
,”
Fluids
5
,
134
(
2020
).
190.
B.
Budich
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Numerical simulation and analysis of condensation shocks in cavitating flow
,”
J. Fluid Mech.
838
,
759
813
(
2018
).
191.
I. H.
Sezal
,
S. J.
Schmidt
,
G. H.
Schnerr
,
M.
Thalhamer
, and
M.
Förster
, “
Shock and wave dynamics in cavitating compressible liquid flows in injection nozzles
,”
Shock Waves
19
,
49
58
(
2009
).
192.
C.
Xu
,
S.
Heister
, and
R.
Field
, “
Cavitating flow modeling including energy interchange effects
,” AIAA Paper No. 2003-4915,
2003
.
193.
W.
Yuan
and
G. H.
Schnerr
, “
Numerical simulation of two-phase flow in injection nozzles: Interaction of cavitation and external jet formation
,”
J. Fluids Eng.
125
,
963
969
(
2003
).
194.
R. F.
Kunz
,
D. A.
Boger
,
D. R.
Stinebring
,
T. S.
Chyczewski
,
J. W.
Lindau
,
H. J.
Gibeling
,
S.
Venkateswaran
, and
T. R.
Govindan
, “
A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction
,”
Comput. Fluids
29
,
849
875
(
2000
).
195.
E.
Goncalvès
and
B.
Charrière
, “
Modelling for isothermal cavitation with a four-equation model
,”
Int. J. Multiphase Flow
59
,
54
72
(
2014
).
196.
T. S.
Folden
and
F. J.
Aschmoneit
, “
A classification and review of cavitation models with an emphasis on physical aspects of cavitation
,”
Phys. Fluids
35
,
081301
(
2023
).
197.
J.
Sauer
,
G.
Winkler
, and
G. H.
Schnerr
, “
Cavitation and condensation–common aspects of physical modeling and numerical approach
,”
Chem. Eng. Technol.
23
,
663
666
(
2000
).
198.
J.
Zhu
,
Y.
Chen
,
D.
Zhao
, and
X.
Zhang
, “
Extension of the Schnerr–Sauer model for cryogenic cavitation
,”
Eur. J. Mech. B
52
,
1
10
(
2015
).
199.
W.
Shyy
,
J.
Wu
, and
Y.
Utturkar
, “
Computational modeling of cavitation for liquid rocket applications
,” AIAA Paper No. 2004-3985,
2004
.
200.
J.
Sauer
and
G. H.
Schnerr
, “
Unsteady cavitating flow: A new cavitation model based on a modified front capturing method and bubble dynamics
,” in
Proceedings of 2000 ASME Fluid Engineering Summer Conference
(
American Society of Mechanical Engineers
,
2000
), pp.
11
15
.
201.
W.
Li
,
Y.
Yang
,
W.-d.
Shi
,
X.
Zhao
, and
W.
Li
, “
The correction and evaluation of cavitation model considering the thermodynamic effect
,”
Math. Probl. Eng.
2018
,
7217513
.
202.
V.
Srinivasan
,
A. J.
Salazar
, and
K.
Saito
, “
Numerical simulation of cavitation dynamics using a cavitation-induced-momentum-defect (CIMD) correction approach
,”
Appl. Math. Model.
33
,
1529
1559
(
2009
).
203.
X.
Margot
,
S.
Hoyas
,
A.
Gil
, and
S.
Patouna
, “
Numerical modelling of cavitation: Validation and parametric studies
,”
Eng. Appl. Comput. Fluid Mech.
6
,
15
24
(
2012
).
204.
D.
Cao
,
G.
He
,
H.
Pan
, and
F.
Qin
, “
Numerical simulation of the thermal effect in the cavitating venturi flow
,”
J. Thermophys. Heat Transfer
29
,
190
197
(
2015
).
205.
W.
Yuan
,
J.
Sauer
, and
G. H.
Schnerr
, “
Modeling and computation of unsteady cavitation flows in injection nozzles
,”
Méc. Ind.
2
,
383
394
(
2001
).
206.
E.
Goncalves
,
J.
Decaix
, and
R. F.
Patella
, “
Unsteady simulation of cavitating flows in venturi
,”
J. Hydrodyn. Ser. B
22
,
711
758
(
2010
).
207.
E.
Goncalvès
and
R. F.
Patella
, “
Numerical study of cavitating flows with thermodynamic effect
,”
Comput. Fluids
39
,
99
113
(
2010
).
208.
X.
Zhang
,
L.
Qiu
,
H.
Qi
,
X.
Zhang
, and
Z.
Gan
, “
Modeling liquid hydrogen cavitating flow with the full cavitation model
,”
Int. J. Hydrogen Energy
33
,
7197
7206
(
2008
).
209.
S.
Rahbarimanesh
,
J.
Brinkerhoff
, and
J.
Huang
, “
Development and validation of a homogeneous flow model for simulating cavitation in cryogenic fluids
,”
Appl. Math. Model.
56
,
584
611
(
2018
).
210.
Kuldeep
and
V. K.
Saharan
, “
Computational study of different venturi and orifice type hydrodynamic cavitating devices
,”
J. Hydrodyn. Ser. B
28
,
293
305
(
2016
).
211.
H.
Rouse
and
J. S.
McNown
,
Cavitation and Pressure Distribution: Head Forms at Zero Angle of Yaw
(
State University of Iowa
,
1948
).
212.
T. A.
Bashir
,
A. G.
Soni
,
A. V.
Mahulkar
, and
A. B.
Pandit
, “
The CFD driven optimisation of a modified venturi for cavitational activity
,”
Can. J. Chem. Eng.
89
,
1366
1375
(
2011
).
213.
J.
Hord
,
Cavitation in Liquid Cryogens: Hydrofoil. II
(
National Aeronautics and Space Administration
,
1973
), Vol.
2156
.
214.
M. P.
Badve
,
M. N.
Bhagat
, and
A. B.
Pandit
, “
Microbial disinfection of seawater using hydrodynamic cavitation
,”
Sep. Purif. Technol.
151
,
31
38
(
2015
).
215.
Z.
He
,
Y.
Chen
,
X.
Leng
,
Q.
Wang
, and
G.
Guo
, “
Experimental visualization and les investigations on cloud cavitation shedding in a rectangular nozzle orifice
,”
Int. Commun. Heat Mass Transfer
76
,
108
116
(
2016
).
216.
T.
Trummler
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Investigation of condensation shocks and re-entrant jet dynamics in a cavitating nozzle flow by large-eddy simulation
,”
Int. J. Multiphase Flow
125
,
103215
(
2020
).
217.
P. G.
Salvador
and
S.
Frankel
, “
Numerical modeling of cavitation using fluent: Validation and parametric studies
,” AIAA Paper No. 2004-2642,
2004
.
218.
G. C.
Beck
, “
Cavitating venturi model using standard element and options in commercially available lumped-parameter software
,” AIAA Paper No. 2015-3768,
2015
.
219.
M. G.
Rodio
and
P. M.
Congedo
, “
Robust analysis of cavitating flows in the venturi tube
,”
Eur. J. Mech. B
44
,
88
99
(
2014
).
220.
M. G.
De Giorgi
,
A.
Ficarella
,
F.
Chiara
, and
D.
Laforgia
, “
Experimental and numerical investigations of cavitating flows
,” AIAA Paper No. 2005-5278,
2005
.
221.
A.
Vijayan
,
S.
Siddharth
, and
P.
Pradeep Kumar
, “
On the predictability of cavitation zone in cavitating venturi
,” in
7th International and 45th National Conference on Fluid Mechanics and Fluid Power
,
IIT Bombay, Mumbai, India
, 10–12 December,
2018
.
222.
K.
Chavan
,
B.
Bhingole
,
J.
Raut
, and
A.
Pandit
, “
Numerical optimization of converging diverging miniature cavitating nozzles
,”
J. Phys. Con. Ser.
656
,
012138
(
2015
).
223.
G. G.
Dastane
,
M. P.
Badve
,
V. K.
Saharan
, and
A.
Pandit
, “
Numerical optimization and experimental validation of hydrodynamic cavitating device
,” in
8th International Symposium on Cavitation
,
Singapore
(
Research Publishing Services
,
2012
), pp.
978
981
.
224.
D. H.
Fruman
,
J.-L.
Reboud
, and
B.
Stutz
, “
Estimation of thermal effects in cavitation of thermosensible liquids
,”
Int. J. Heat Mass Transfer
42
,
3195
3204
(
1999
).
225.
D. P.
Schmidt
,
C. J.
Rutland
, and
M. L.
Corradini
, “
A fully compressible, two-dimensional model of small, high-speed, cavitating nozzles
,”
At. Sprays
9
,
255
276
(
1999
).
226.
C.
Vortmann
,
G. H.
Schnerr
, and
S.
Seelecke
, “
Thermodynamic modeling and simulation of cavitating nozzle flow
,”
Int. J. Heat Fluid Flow
24
,
774
783
(
2003
).
227.
S. T.
Johansen
,
J.
Wu
, and
W.
Shyy
, “
Filter-based unsteady rans computations
,”
Int. J. Heat Fluid Flow
25
,
10
21
(
2004
).
228.
P.
Ullas
,
D.
Chatterjee
, and
S.
Vengadesan
, “
Prediction of unsteady, internal turbulent cavitating flow using dynamic cavitation model
,”
Int. J. Numer. Methods Heat Fluid Flow
32
,
3210
3232
(
2022
).
229.
J.
Rolland
,
G.
Boitel
,
S.
Barre
,
E.
Goncalves
, and
R. F.
Patella
, “
Experiments and modelling of cavitating flows in venturi, Part I: Stable cavitation
,” in
Sixth International Symposium on Cavitation, CAV2006
(September 11–15, 2006), p.
hal-00212021
.
230.
G. H.
Schnerr
, “
Modeling and computation of unsteady cavitating flows based on bubble dynamics
,” in
Numerical Simulations of Incompressible Flows
(
World Scientific
,
2003
), pp.
544
574
.
231.
X.-L.
Zhang
,
M.-M.
Ge
,
G.-J.
Zhang
, and
O.
Coutier-Delgosha
, “
Compressible effects modeling for turbulent cavitating flow in a small venturi channel: An empirical turbulent eddy viscosity correction
,”
Phys. Fluids
33
,
035148
(
2021
).
232.
C.
Gouin
,
C.
Junqueira-Junior
,
E.
Goncalves Da Silva
, and
J.-C.
Robinet
, “
Numerical investigation of three-dimensional partial cavitation in a venturi geometry
,”
Phys. Fluids
33
,
063312
(
2021
).
233.
P.
Gorkh
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Numerical investigation of cavitation-regimes in a converging-diverging nozzle
,” in
International Symposium on Cavitation (CAV, 2018)
((American Institute of Mechanical Engineers, 2018), p.
5
-
S
.
234.
J.
Hord
,
Cavitation in Liquid Cryogens. 3: Ogives
(
National Aeronautics and Space Administration
,
1973
).
235.
L.
Fang
,
X.
Xu
,
A.
Li
,
Z.
Wang
, and
Q.
Li
, “
Numerical investigation on the flow characteristics and choking mechanism of cavitation-induced choked flow in a venturi reactor
,”
Chem. Eng. J.
423
,
130234
(
2021
).
236.
P. M.
Congedo
,
E.
Goncalves
, and
M. G.
Rodio
, “
About the uncertainty quantification of turbulence and cavitation models in cavitating flows simulations
,”
Eur. J. Mech. B
53
,
190
204
(
2015
).
You do not currently have access to this content.