We study a collection of polar self-propelled particles or polar flock on a two dimensional substrate involving birth and death. Most of the previous studies of polar flock with birth and death have focused on the steady state characteristics of Malthusian flock. We emphasize on the significance of rate of birth and death on the kinetics as well as steady state of the system. Our system is modeled using coarse-grained hydrodynamic equations of motion for local density and velocity of the flock. Results are obtained for different birth and death rates by solving the hydrodynamic equations using numerical integration and linearized calculation about the broken symmetry state. The presence of finite birth and death rate affects the density field significantly, whereas the effect on velocity field is moderate. The early time growth of velocity field slows down in the presence of finite birth and death rate, whereas at late times it approaches the value of non-conserved growth kinetics for all birth and death rates. The density field shows the strong time dependent growth kinetics. The asymptotic growth law for density depends on the birth and death rates and shows a crossover from 5/6 for the immortal flock to 1/4 for large birth and death rates. In the steady state, the presence of birth and death rate leads to the suppression of speed of sound wave, velocity, and density fluctuations in the system.

1.
S.
Ramaswamy
, “
The mechanics and statistics of active matter
,”
Annu. Rev. Condens. Matter Phys.
1
,
323
345
(
2010
).
2.
M. C.
Marchetti
,
J.-F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
(
2013
).
3.
J.
Toner
,
Y.
Tu
, and
S.
Ramaswamy
, “
Hydrodynamics and phases of flocks
,”
Ann. Phys.
318
,
170
244
(
2005
).
4.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
5.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
(
1995
).
6.
V.
Semwal
,
S.
Dikshit
, and
S.
Mishra
, “
Dynamics of a collection of active particles on a two-dimensional periodic undulated surface
,”
Eur. Phys. J. E
44
,
20
(
2021
).
7.
F.
Cichos
,
K.
Gustavsson
,
B.
Mehlig
, and
G.
Volpe
, “
Machine learning for active matter
,”
Nat. Mach. Intell.
2
,
94
103
(
2020
).
8.
D.
Needleman
and
Z.
Dogic
, “
Active matter at the interface between materials science and cell biology
,”
Nat. Rev. Mater.
2
,
17048
(
2017
).
9.
G.
De Magistris
and
D.
Marenduzzo
, “
An introduction to the physics of active matter
,”
Physica A
418
,
65
77
(
2015
).
10.
É.
Fodor
and
M. C.
Marchetti
, “
The statistical physics of active matter: From self-catalytic colloids to living cells
,”
Physica A
504
,
106
120
(
2018
).
11.
L.
Balasubramaniam
,
R.-M.
Mège
, and
B.
Ladoux
, “
Active nematics across scales from cytoskeleton organization to tissue morphogenesis
,”
Curr. Opin. Genet. Develop.
73
,
101897
(
2022
).
12.
T.
Feder
, “
Statistical physics is for the birds
,”
Phys. Today
60
(
10
),
28
(
2007
).
13.
A.
Bottinelli
,
D.
Sumpter
, and
J.
Silverberg
, “
Jammed humans in high-density crowd disasters
,” in
APS March Meeting Abstracts
,
2017
, Vol.
2017
.
14.
B.
Liebchen
and
D.
Levis
, “
Collective behavior of chiral active matter: Pattern formation and enhanced flocking
,”
Phys. Rev. Lett.
119
,
058002
(
2017
).
15.
B.
Mahault
,
X-c
Jiang
,
E.
Bertin
,
Y-q
Ma
,
A.
Patelli
,
X-q
Shi
, and
H.
Chaté
, “
Self-propelled particles with velocity reversals and ferromagnetic alignment: Active matter class with second-order transition to quasi-long-range polar order
,”
Phys. Rev. Lett.
120
,
258002
(
2018
).
16.
B.
Bhattacherjee
,
S.
Mishra
, and
S.
Manna
, “
Topological-distance-dependent transition in flocks with binary interactions
,”
Phys. Rev. E
92
,
062134
(
2015
).
17.
H.
Chaté
,
F.
Ginelli
,
G.
Grégoire
, and
F.
Raynaud
, “
Collective motion of self-propelled particles interacting without cohesion
,”
Phys. Rev. E
77
,
046113
(
2008
).
18.
S.
Mishra
and
S.
Pattanayak
, “
Boundary induced convection in a collection of polar self-propelled particles
,”
Physica A
477
,
128
135
(
2017
).
19.
J. P.
Singh
,
S.
Pattanayak
, and
S.
Mishra
, “
Ordering kinetics and steady state of self-propelled particles with random-bond disorder
,”
J. Phys. A
54
,
115001
(
2021
).
20.
S.
Dikshit
and
S.
Mishra
, “
Activity-driven phase separation and ordering kinetics of passive particles
,”
Eur. Phys. J. E
45
,
21
(
2022
).
21.
T. B.
Liverpool
, “
Anomalous fluctuations of active polar filaments
,”
Phys. Rev. E
67
,
031909
(
2003
).
22.
G.
Guan
and
J.
Lin
, “
Study on the interaction and motion patterns of squirmers swimming in a shear flow
,”
Phys. Fluids
35
,
063302
(
2023
).
23.
Z.
Ouyang
,
H.
Ye
,
J.
Lin
, and
N.
Phan-Thien
, “
Interface-resolved simulations of particles in active nematics
,”
Phys. Fluids
35
,
063332
(
2023
).
24.
J.
Li
and
P. M.
Carrica
, “
Numerical study of the cavitating flow over backward facing step with a polydisperse two-phase flow model
,”
Phys. Fluids
35
,
063313
(
2023
).
25.
A.
Tiribocchi
,
M.
Durve
,
M.
Lauricella
,
A.
Montessori
,
D.
Marenduzzo
, and
S.
Succi
, “
Shapes and dynamic regimes of a polar active fluid droplet under confinement
,”
Phys. Fluids
35
,
063106
(
2023
).
26.
S.
Pattanayak
,
R.
Das
,
M.
Kumar
, and
S.
Mishra
, “
Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels
,”
Eur. Phys. J. E
42
,
62
(
2019
).
27.
P.
Eswaran
and
S.
Mishra
, “
Synchronized rotations in chemotactic active matter
,” arXiv:2303.14489 (
2023
).
28.
R.
Das
,
S.
Mishra
, and
S.
Puri
, “
Ordering dynamics of self-propelled particles in an inhomogeneous medium
,”
Europhys. Lett.
121
,
37002
(
2018
).
29.
S.
Kumar
and
S.
Mishra
, “
Active nematics with quenched disorder
,”
Phys. Rev. E
102
,
052609
(
2020
).
30.
Z.
Chen
,
X.
Li
, and
L.
Chen
, “
Enhanced performance of tandem plunging airfoils with an asymmetric pitching motion
,”
Phys. Fluids
34
,
011910
(
2022
).
31.
J.
Wu
,
G.
Li
,
L.
Chen
, and
Y.
Zhang
, “
Unsteady aerodynamic performance of a tandem flapping–fixed airfoil configuration at low Reynolds number
,”
Phys. Fluids
34
,
111907
(
2022
).
32.
L.
Chen
,
W.
Sun
, and
Y. Q.
Wang
, “
Effects of flapping deviation on the hovering performance of tandem pitching-plunging foils
,”
Comput. Fluids
250
,
105708
(
2023
).
33.
N. D.
Mermin
and
H.
Wagner
, “
Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models
,”
Phys. Rev. Lett.
17
,
1133
(
1966
).
34.
V.
Dossetti
and
F. J.
Sevilla
, “
Emergence of collective motion in a model of interacting Brownian particles
,”
Phys. Rev. Lett.
115
,
058301
(
2015
).
35.
Y.
Tu
,
J.
Toner
, and
M.
Ulm
, “
Sound waves and the absence of Galilean invariance in flocks
,”
Phys. Rev. Lett.
80
,
4819
(
1998
).
36.
J.
Toner
and
Y.
Tu
, “
Long-range order in a two-dimensional dynamical XY model: How birds fly together
,”
Phys. Rev. Lett.
75
,
4326
(
1995
).
37.
J.
Toner
and
Y.
Tu
, “
Flocks, herds, and schools: A quantitative theory of flocking
,”
Phys. Rev. E
58
,
4828
(
1998
).
38.
B.
Mahault
,
F.
Ginelli
, and
H.
Chaté
, “
Quantitative assessment of the Toner and Tu theory of polar flocks
,”
Phys. Rev. Lett.
123
,
218001
(
2019
).
39.
S.
Dikshit
and
S.
Mishra
, “
Ordering kinetics in active polar fluid
,”
Europhys. Lett.
143
,
17001
(
2023
).
40.
Y.
Peng
,
Z.
Liu
, and
X.
Cheng
, “
Imaging the emergence of bacterial turbulence: Phase diagram and transition kinetics
,”
Sci. Adv.
7
,
eabd1240
(
2021
).
41.
H. H.
Wensink
,
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
R. E.
Goldstein
,
H.
Löwen
, and
J. M.
Yeomans
, “
Meso-scale turbulence in living fluids
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
14308
14313
(
2012
).
42.
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
H. H.
Wensink
,
M.
Bär
, and
R. E.
Goldstein
, “
Fluid dynamics of bacterial turbulence
,”
Phys. Rev. Lett.
110
,
228102
(
2013
).
43.
J.
Toner
, “
Birth, death, and flight: A theory of Malthusian flocks
,”
Phys. Rev. Lett.
108
,
088102
(
2012
).
44.
L.
Chen
,
C. F.
Lee
,
J.
Toner
et al, “
Moving, reproducing, and dying beyond flatland: Malthusian flocks in dimensions d > 2
,”
Phys. Rev. Lett.
125
,
098003
(
2020
).
45.
L.
Chen
,
C. F.
Lee
,
A.
Maitra
, and
J.
Toner
, “
Packed swarms on dirt: Two-dimensional incompressible flocks with quenched and annealed disorder
,”
Phys. Rev. Lett.
129
,
188004
(
2022
).
46.
L.
Chen
,
C. F.
Lee
, and
J.
Toner
, “
Universality class for a nonequilibrium state of matter: A d=4-ε expansion study of Malthusian flocks
,”
Phys. Rev. E
102
,
022610
(
2020
).
47.
T. R.
Malthus
,
D.
Winch
, and
P.
James
,
Malthus:'An Essay on the Principle of Population
(
Cambridge University Press
,
1992
).
48.
A. J.
Bray
, “
Theory of phase-ordering kinetics
,”
Adv. Phys.
51
,
481
587
(
2002
).
49.
U. M. B.
Marconi
,
L.
Caprini
, and
A.
Puglisi
, “
Hydrodynamics of simple active liquids: The emergence of velocity correlations
,”
New J. Phys.
23
,
103024
(
2021
).
50.
A.
Peshkov
,
E.
Bertin
,
F.
Ginelli
, and
H.
Chaté
, “
Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic vicsek-like models
,”
Eur. Phys. J. Spec. Top.
223
,
1315
1344
(
2014
).
51.
N.
Goldenfeld
,
Lectures on Phase Transitions and the Renormalization Group
(
CRC Press
,
2018
).
52.
T. R.
Malthus
and
T.
Malthus
,
An Essay on the Principle of Population
(
Routledge/Thoemmes Press
,
London
,
1996
).
53.
P. K.
Mishra
and
S.
Mishra
, “
Active polar flock with birth and death
,”
Phys. Fluids
34
,
057110
(
2022
).
54.
V.
Bally
and
D.
Talay
, “
The law of the Euler scheme for stochastic differential equations
,”
Probab. Theory Relat. Fields
104
,
43
60
(
1996
).
55.
P. C.
Hohenberg
and
B. I.
Halperin
, “
Theory of dynamic critical phenomena
,”
Rev. Mod. Phys.
49
,
435
(
1977
).
56.
N.
Katyal
,
S.
Dey
,
D.
Das
, and
S.
Puri
, “
Coarsening dynamics in the vicsek model of active matter
,”
Eur. Phys. J. E
43
,
10
(
2020
).
57.
S.
Mishra
,
A.
Baskaran
, and
M. C.
Marchetti
, “
Fluctuations and pattern formation in self-propelled particles
,”
Phys. Rev. E
81
,
061916
(
2010
).
58.
P. M.
Chaikin
,
T. C.
Lubensky
, and
T. A.
Witten
,
Principles of Condensed Matter Physics
(
Cambridge University Press
,
Cambridge
,
1995
), Vol.
10
.
59.
R.
Voituriez
,
J.-F.
Joanny
, and
J.
Prost
, “
Spontaneous flow transition in active polar gels
,”
Europhys. Lett.
70
,
404
(
2005
).
60.
K.
Kruse
,
J.-F.
Joanny
,
F.
Jülicher
,
J.
Prost
, and
K.
Sekimoto
, “
Generic theory of active polar gels: A paradigm for cytoskeletal dynamics
,”
Eur. Phys. J. E
16
,
5
16
(
2005
).
61.
W.
Mather
,
O.
Mondragón-Palomino
,
T.
Danino
,
J.
Hasty
, and
L. S.
Tsimring
, “
Streaming instability in growing cell populations
,”
Phys. Rev. Lett.
104
,
208101
(
2010
).
62.
D.
Karig
,
K. M.
Martini
,
T.
Lu
,
N. A.
DeLateur
,
N.
Goldenfeld
, and
R.
Weiss
, “
Stochastic turing patterns in a synthetic bacterial population
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
6572
6577
(
2018
).
63.
M. E.
Cates
,
D.
Marenduzzo
,
I.
Pagonabarraga
, and
J.
Tailleur
, “
Arrested phase separation in reproducing bacteria creates a generic route to pattern formation
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
11715
11720
(
2010
).
64.
H.-P.
Zhang
,
A.
Be'er
,
E.-L.
Florin
, and
H. L.
Swinney
, “
Collective motion and density fluctuations in bacterial colonies
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
13626
13630
(
2010
).
65.
D.
Dell'Arciprete
,
M.
Blow
,
A.
Brown
,
F.
Farrell
,
J. S.
Lintuvuori
,
A.
McVey
,
D.
Marenduzzo
, and
W. C.
Poon
, “
A growing bacterial colony in two dimensions as an active nematic
,”
Nat. Commun.
9
,
4190
(
2018
).
You do not currently have access to this content.