A graphene nanoribbon (GNR) is a strip of carbon atoms having sp2 hybridization. It has wide application in nanoelectronics and opto-electronics. Usual fields of application are found in field effect transistors, interconnects, logic gates, sensors, energy storage, and photovoltaics. A single unit graphene nanoribbon is a long strip of graphene rings. Such a GNR structure may be seen as two one-dimensional carbon chains that are suitable connected with bonds. We have done tight binding calculations and density functional theory simulation of carbon chains. We study the single bond and double bond one-dimensional carbon chain and the alternate bond (t1-t2), also called a bond order system in one dimension and quasi one-dimensional chain. We find evidence for the emergence of multiple gaps in the energy spectrum of these systems. We have mapped the alternate bond system to the Su–Schrieffer–Heeger model (with a small modification) in one dimension and quasi one dimension. This is the first time such a mapping has been attempted and a comprehensive theoretical and computational study of these chains has been performed.

1.
O. V.
Yazyev
, “
A guide to the design of electronic properties of graphene nanoribbons
,”
Acc. Chem. Res.
46
(
10
),
2319
2328
(
2013
).
2.
A.
Celis
,
M. N.
Nair
,
A.
Taleb-Ibrahimi
,
E. H.
Conrad
,
C.
Berger
,
W. A.
De Heer
, and
A.
Tejeda
, “
Graphene nanoribbons: Fabrication, properties and devices
,”
J. Phys. D
49
(
14
),
143001
(
2016
).
3.
C.
Bena
and
G.
Montambaux
, “
Remarks on the tight binding model of graphene
,”
New J. Phys.
11
,
095003
(
2009
).
4.
Y.
Hancock
,
A.
Uppstu
,
K.
Saloriutta
,
A.
Harju
, and
J.
Marti Puska
, “
Generalized ight-binding transport model for graphene nanoribbon-based systems
,”
Phys. Rev. B
81
(
24
),
245402
(
2010
).
5.
D. A.
Bahamon
,
A. L. C.
Pereira
, and
P. A.
Schulz
, “
Third edge for a graphene nanoribbon: A tight-binding model calculation
,”
Phys. Rev. B
79
,
125414
(
2009
).
6.
W.
Mathew
,
C.
Foulkes
, and
R.
Haydock
, “
Tight-binding models and density-functional theory
,”
Phys. Rev. B
39
(
17
),
12520
(
1989
).
7.
S.
Ferreira
,
J.
Duarte
, Jr.
, and
S.
Frota-Pessa
, “
Parametrized linear muffin-tin orbitals atomic-sphere approximation tight-binding scheme: The electronic structure of MoRu alloys
,”
Phys. Rev. B
41
(
9
),
5627
(
1990
).
8.
D.
Azses
,
D. F.
Mross
, and
E.
Sela
, “
Symmetry-resolved entanglement of two-dimensional symmetry-protected topological states
,”
Phys. Rev. B
107
(
11
,
115113
(
2023
).
9.
C.
Barry Carter
and
M.
Grant Norton
,
Bonds and Energy Bands. In: Ceramic Materials
(Springer, 2007), pp.
51
70
.
10.
J. P.
Joost
,
A. P.
Jauho
, and
M.
Bonitz
, “
Correlated topological states in graphene nanoribbon heterostructures
,”
Nano Lett.
19
(
12
),
9045
9050
(
2019
).
11.
G.
Jhaa
,
P. D.
Pancharatna
, and
M. M.
Balakrishnarajan
, “
Topological impact of delocalization on the stability and band gap of partially oxidized graphene
,”
ACS Omega
8
(
5
),
5124
5135
(
2023
).
12.
A.
Kimouche
,
M. M.
Ervasti
,
R.
Drost
,
S.
Halonen
,
A.
Harju
,
P. M.
Joensuu
,
J.
Sainio
, and
P.
Liljeroth
, “
Ultra-narrow metallic armchair graphene nanoribbons
,”
Nat. Commun.
6
(
1
),
10177
(
2015
).
13.
N.
Kaur
,
B. C.
Choudhary
, and
R. K.
Sharma
, “
Carbon-dioxide gas sensor using co-doped graphene nanoribbon: A first principle DFT study
,”
Mater. Today Proc.
45
,
5023
5028
(
2021
).
14.
R.
Jyoti
,
M.
Chauhan
,
B. C.
Choudhary
, and
R. K.
Sharma
, “
Density functional theory study of manganese doped armchair graphene nanoribbon for effective carbon dioxide gas sensing
,”
ES Energ. Environ.
18
,
47
55
(
2022
).
15.
N.
Zheng
,
S.
Yang
,
H.
Xu
,
Z.
Lan
,
Z.
Wang
, and
H.
Gu
, “
A DFT study of the enhanced hydrogen storage performance of the Li-decorated graphene nanoribbons
,”
Vacuum
171
,
109011
(
2020
).
16.
F. N.
Ajeel
,
A. M.
Khudhair
,
M. H.
Mohammed
, and
K. M.
Mahdi
, “
DFT investigation of graphene nanoribbon as a potential nanobiosensor for tyrosine amino acid
,”
Russ. J. Phys. Chem. A
93
,
778
785
(
2019
).
17.
M.
Bursch
,
J. M.
Mewes
,
A.
Hansen
, and
S.
Grimme
, “
Best‐practice DFT protocols for basic molecular computational chemistry
,”
Angew. Chem., Int. Ed.
61
(
42
),
e202205735
(
2022
).
18.
T.
Gupta
,
S.
Kulkarni
, and
K.
Sharma
, “
A study of the permeation barrier of nanoporous graphene
,”
Mater. Today.
89
,
41
(
2023
).
19.
M. D.
Hanwell
,
D. E.
Curtis
,
D. C.
Lonie
,
T.
Vandermeersch
,
E.
Zurek
, and
G. R.
Hutchison
, “
Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
,”
J. Cheminf.
4
(
1
),
1
17
(
2012
).
20.
I. I. R.
Dennington
,
T.
Keith
,
J.
Millam
,
K.
Eppinnett
,
W. L.
Hovell
, and
R.
Gilliland
,
GaussView, Version 3.09
(
Semichem,, Inc
.,
Shawnee Mission
,
KS
,
2003
).
21.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
, and
H.
Nakatsuji
,
Gaussian 09, Revision D. 01
(
Gaussian, Inc
.,
Wallingford CT
,
2009
).
22.
N. B.
Le
and
L. M.
Woods
, “
Folded graphene nanoribbons with single and double closed edges
,”
Phys. Rev. B
85
(
3
),
035403
(
2012
).
23.
E. J.
Meier
,
F. A.
An
, and
B.
Gadway
, “
Observation of the topological soliton state in the Su–Schrieffer–Heeger model
,”
Nat. Commun.
7
(
1
),
13986
(
2016
).
24.
J. K.
Asbóth
,
L.
Oroszlány
, and
A.
Pályi
, “
The Su-Schrieffer-Heeger (SSH) Model
,” in
A Short Course on Topological Insulators
, Lecture Notes in Physics, 919 (
Springer
,
2016
), pp.
1
22
.
25.
O.
Gröning
,
S.
Wang
,
X.
Yao
,
C. A.
Pignedoli
,
G.
Borin Barin
,
C.
Daniels
,
A.
Cupo
,
V.
Meunier
,
X.
Feng
,
A.
Narita
, and
K.
Müllen
, “
Engineering of robust topological quantum phases in graphene nanoribbons
,”
Nature
560
(
7717
),
209
213
(
2018
).
26.
S.
Gupta
and
T.
Gupta
, “
Physics of metal–correlated barrier with disorder–metal heterostructure
,”
Solid State Commun.
152
(
10
),
878
882
(
2012
).
27.
M. Y.
Han
,
B.
Özyilmaz
,
Y.
Zhang
, and
P.
Kim
, “
Energy band-gap engineering of graphene nanoribbons
,”
Phys. Rev. Lett.
98
(
20
),
206805
(
2007
).
28.
S.
Gupta
and
T.
Gupta
, “
Physics of a metal-correlated barrier–metal heterostructure
,”
Solid State Commun.
152
(
2
),
53
55
(
2012
).
29.
T.
Gupta
and
S.
Gupta
, “
Physics of metal-corrrelated barrier with chemical modulation-metal heterostructure
,”
Physica B
449
,
220
224
(
2014
).
30.
S.
Wang
,
L.
Talirz
,
C. A.
Pignedoli
,
X.
Feng
,
K.
Müllen
,
R.
Fasel
, and
P.
Ruffieux
, “
Giant edge state splitting at atomically precise graphene zigzag edges
,”
Nat. Commun.
7
(
1
),
11507
(
2016
).
31.
J.
Lawrence
,
P.
Brandimarte
,
A.
Berdonces-Layunta
,
M. S.
Mohammed
,
A.
Grewal
,
C. C.
Leon
,
D.
Sanchez-Portal
, and
D. G.
de Oteyza
, “
Probing the magnetism of topological end states in 5-armchair graphene nanoribbons
,”
ACS Nano
14
(
4
),
4499
4508
(
2020
).
You do not currently have access to this content.