The unsteadiness due to tip leakage vortex (TLV) breakdown was studied using a special experimental test campaign in parallel with numerical simulations. The back flow vortex (BFV), an isolated vortex caused by TLV spiral-type breakdown, was found to play a key role in rotating instability (RI). High-speed pressure transducers were used to measure the unsteady pressure field at the casing end wall of the blade in an isolated subsonic compressor rotor, which identified a low-frequency fluctuation at the near stall condition. A single-passage unsteady Reynolds-averaged Navier–Stokes simulation was used to study the evolution of unsteady flow structures, validated by the experimental measurements. Two distinct kinds of periodically unsteady flow were revealed by the simulations. A high-frequency fluctuation corresponding to 1.0 blade pass frequency (BPF) was caused by the spiral-type breakdown of the TLV. The other low-frequency fluctuation corresponding to 0.5BPF was caused by the feedback interaction between the BFV and the blade loading. The BFV was generated by the TLV breakdown, which was separated from the twisted vortex core of the TLV, and it moved downstream along the pressure side of the adjacent blade. A larger sized BFV reduced the local loading of the adjacent blade. The TLV was weakened as a consequence of the reduced loading, resulting in a smaller sized BFV. The blade tip loading was relatively less affected by the small sized BFV rather than the larger sized BFV. Therefore, the blade loading recovered and the size of the BFV increased, repeating the cycle. This feedback mechanism produced a pressure fluctuation with a frequency equal to 0.5BPF, which was closely related to RI.

1.
A.
Epstein
,
J.
Ffowc
, and
E.
Greitzer
, “
Active suppression of compressor instabilities
,” AIAA Paper No. 1986-1914,
1986
.
2.
I. J.
Day
, “
Active suppression of rotating stall and surge in axial compressors
,”
J. Turbomach.
115
,
40
47
(
1993
).
3.
I. J.
Day
,
T.
Breuer
,
J.
Escuret
,
M.
Cherrett
, and
A.
Wilson
, “
Stall inception and the prospects for active control in four high-speed compressors
,”
J. Turbomach.
121
,
18
27
(
1999
).
4.
J.
Schreiber
,
B.
Paoletti
, and
X.
Ottavy
, “
Observations on rotating instabilities and spike type stall inception in a high-speed multistage compressor
,”
Int. J. Rotating Mach.
2017
,
1
11
.
5.
K.
Mathioudakis
and
F. A. E.
Breugelmans
, “
Development of small rotating stall in a single stage axial compressor
,” in
Proceedings of the Aircraft Engine Marine Turbomachinery Microturbines and Small Turbomachinery
(
American Society of Mechanical Engineers
,
1985
), Vol.
1
.
6.
F.
Kameier
and
W.
Neise
, “
Rotating blade flow instability as a source of noise in axial turbomachines
,”
J. Sound Vib.
203
,
833
853
(
1997
).
7.
R.
Mailach
,
H.
Sauer
, and
K.
Vogeler
, “
The periodical interaction of the tip clearance flow in the blade rows of axial compressors
,” in
Proceedings of the Aircraft Engine
(
American Society of Mechanical Engineers
,
2001
), Vol.
1
.
8.
H.
Li
,
Q.
Zheng
,
Z.
Chen
,
Y.
Duan
,
B.
Jiang
, and
E.
Benini
, “
The role of radial secondary flow in the process of rotating stall for a 1.5-stage axial compressor
,”
Aerosp. Sci. Technol.
115
,
106752
(
2021
).
9.
Z.
Yang
,
Z.
Liu
,
S.
Zhang
,
X.
Xi
,
J.
Tian
,
Y.
Wu
, and
H.
Ouyang
, “
Tip flow on rotating instability on an axial compressor with different tip clearances
,”
Aerosp. Sci. Technol.
139
,
108364
(
2023
).
10.
M.
Zhang
,
X.
Dong
,
J.
Li
,
D.
Sun
, and
X.
Sun
, “
Effect of differential tip clearance on the performance and noise of an axial compressor
,”
Aerosp. Sci. Technol.
132
,
108070
(
2023
).
11.
H. D.
Vo
,
C. S.
Tan
, and
E. M.
Greitzer
, “
Criteria for spike initiated rotating stall
,”
J. Turbomach.
130
,
011023
(
2008
).
12.
H. D.
Vo
, “
Role of tip clearance flow in rotating instabilities and nonsynchronous vibrations
,”
J. Propul. Power
26
,
556
561
(
2010
).
13.
R.
Mailach
,
I.
Lehmann
, and
K.
Vogeler
, “
Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex
,”
J. Turbomach.
123
(
2000
),
453
460
(
2001
).
14.
J.
März
,
C.
Hah
, and
W.
Neise
, “
An experimental and numerical investigation into the mechanisms of rotating instability
,” in
Proceedings of the Aircraft Engine Marine Turbomachinery Microturbines and Small Turbomachinery
(
American Society of Mechanical Engineers
,
2001
), Vol.
1
.
15.
C.
Li
,
J.
Huang
,
W.
Fu
,
G.
Song
,
Y.
Chang
, and
Z.
Song
, “
Internal vortex breakdowns with stair-step change in rotating flows
,”
Phys. Fluids
34
,
093613
(
2022
).
16.
R.
Vishnu
,
M.
Sharma
, and
A.
Sameen
, “
Effect of heating on topology of vortex breakdown in Vogel–Escudier flow
,”
Phys. Fluids
33
,
107111
(
2021
).
17.
S.
Sharma
,
P. B.
Sachan
,
N.
Kumar
,
R.
Ranjan
,
S.
Kumar
, and
K.
Poddar
, “
Vortex breakdown control using varying near axis swirl
,”
Phys. Fluids
33
,
093606
(
2021
).
18.
X.
Qiang
,
H.
Deng
,
K.
Xia
,
J.
Teng
,
M.
Zhu
, and
S.
Lu
, “
Effects of moving endwall on the unsteadiness of tip leakage flow in compressor cascades
,”
Phys. Fluids
35
,
085116
(
2023
).
19.
B. W.
Keeton
,
J.
Carpio
,
K. K.
Nomura
,
A. L.
Sánchez
, and
F. A.
Williams
, “
Vortex breakdown in variable-density gaseous swirling jets
,”
J. Fluid Mech.
936
,
A1
(
2022
).
20.
B.
Mahfoud
, “
Magnetohydrodynamic effect on vortex breakdown zones in coaxial cylinders
,”
Eur. J. Mech. -B/Fluids
89
,
445
457
(
2021
).
21.
P.
Moise
and
J.
Mathew
, “
Hysteresis and turbulent vortex breakdown in transitional swirling jets
,”
J. Fluid Mech.
915
,
A94
(
2021
).
22.
M.
Sreejith
,
S. A.
Lal
, and
A. S.
Pai
, “
Numerical analysis for the assessment of factors influencing the breakdown of swirl flow in a cylinder driven by a rotating end wall
,”
J. Fluids Eng.
143
,
021302
(
2021
).
23.
M.
Tsoy
,
S.
Skripkin
, and
I.
Litvinov
, “
Two spiral vortex breakdowns in confined swirling flow
,”
Phys. Fluids
35
,
061704
(
2023
).
24.
H.
Jiexuan
and
L.
Yangwei
, “
Evolution of unsteady vortex structures in the tip region of an axial compressor rotor
,”
Phys. Fluids
35
,
045107
(
2023
).
25.
G.
An
,
J.
Kang
,
L.
Wang
,
L.
Zhang
,
J.
Lang
, and
H.
Li
, “
Decoupling and reconstruction analysis in a transonic axial compressor using the dynamic mode decomposition method
,”
Phys. Fluids
35
,
084120
(
2023
).
26.
D.
Shengli
,
C.
Shaowen
,
H.
Sihan
, and
W.
Songtao
, “
Flow instability control of an ultra-highly loaded transonic compressor rotor using self-excited casing bleed
,”
Phys. Fluids
35
,
066134
(
2023
).
27.
A.
Epikhin
, “
Numerical simulation of the unsteady aerodynamic loads on the tail fin in the vortex breakdown flow
,”
Prog. Comput. Fluid Dyn.
21
,
274
(
2021
).
28.
H.
Schrapp
,
U.
Stark
, and
H.
Saathoff
, “
Breakdown of the tip clearance vortex in a rotor equivalent cascade and in a single-stage low-speed compressor
,” in
Proceedings of the Turbomachinery, Parts A, B, and C
(
ASMEDC
,
2008
), Vol.
6
.
29.
H.
Schrapp
,
U.
Stark
, and
H.
Saathoff
, “
Unsteady behaviour of the tip clearance vortex in a rotor equivalent compressor cascade
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
223
,
635
643
(
2009
).
30.
B.
Wang
,
Y.
Wu
,
F.
Yang
, and
S.
Spence
, “
Intermittent breakdown of the tip leakage vortex and the resultant flow unsteadiness in the tip-region of a subsonic compressor cascade
,”
Aerosp. Sci. Technol.
113
,
106679
(
2021
).
31.
T.
Nishioka
,
T.
Kanno
, and
K.
Hiradate
, “
Rotor-tip flow fields near inception point of rotating instability in an axial-flow fan
,” in
Proceedings of the Turbomachinery, Parts A, B, and C
(
ASMEDC
,
2011
), Vol.
7
.
32.
K.
Yamada
,
H.
Kikuta
,
M.
Furukawa
,
S.
Gunjishima
, and
Y.
Hara
, “
Effects of tip clearance on the stall inception process in an axial compressor rotor
,” in
Proceedings of the Turbomachinery
(
American Society of Mechanical Engineers
,
2013
), Vol.
6C
.
33.
J.
Bergner
,
M.
Kinzel
,
H.-P.
Schiffer
, and
C.
Hah
, “
Short length-scale rotating stall inception in a transonic axial compressor: Experimental investigation
,” in
Proceedings of the Turbomachinery, Parts A and B
(
ASMEDC
,
2006
), Vol.
6
.
34.
R.
Seki
,
T.
Azuma
,
J.
Iwatani
,
A.
Nakaniwa
,
H.
Okui
, and
T.
Shibata
, “
Investigation of tip leakage vortex breakdown in a high-speed multistage axial compressor
,”
J. Turbomach.
145
,
071017
(
2023
).
35.
Y.
Wu
,
Q.
Li
,
W.
Chu
,
H.
Zhang
, and
Z.
Su
, “
Numerical investigation of the unsteady behaviour of tip clearance flow and its possible link to stall inception
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
224
,
85
96
(
2010
).
36.
Y.
Wu
,
Q.
Li
,
J.
Tian
, and
W.
Chu
, “
Investigation of pre-stall behavior in an axial compressor rotor. I. Unsteadiness of tip clearance flow
,”
J. Turbomach.
134
,
051027
(
2012
).
37.
Y.
Wu
,
Q.
Li
,
J.
Tian
, and
W.
Chu
, “
Investigation of pre-stall behavior in an axial compressor rotor. II. Flow mechanism of spike emergence
,”
J. Turbomach.
134
,
051028
(
2012
).
38.
Z.
Chen
,
Y.
Wu
,
G.
Yang
,
G.
An
, and
B.
Wang
, “
Investigation into flow mechanism leading to the step change in aerodynamic modes of rotating instabilities in a subsonic axial compressor rotor
,” in
Proceedings of the Turbomachinery
(
American Society of Mechanical Engineers
,
2017
), Vol.
2D
.
39.
Z.
Chen
,
Y.
Wu
, and
G.
An
, “
Tip leakage flow, tip aerodynamic loading and rotating instability in a subsonic high-speed axial flow compressor rotor
,”
Aerosp. Sci. Technol.
110
,
106486
(
2021
).
40.
A. V.
Sentyabov
,
D. V.
Platonov
,
A. V.
Minakov
, and
A. S.
Lobasov
, “
Numerical study of the vortex breakdown and vortex reconnection in the flow path of high-pressure water turbine
,”
J. Phys.: Conf. Ser.
2088
,
012040
(
2021
).
41.
Z.
Wei
,
G.
Ren
,
X.
Gan
,
M.
Ni
, and
W.
Chen
, “
Influence of shock wave on loss and breakdown of tip-leakage vortex in turbine rotor with varying backpressure
,”
Appl. Sci.
11
,
4991
(
2021
).
42.
T.
Sonoda
,
Y.
Yamaguchi
,
T.
Arima
,
M.
Olhofer
,
B.
Sendhoff
, and
H.-A.
Schreiber
, “
Advanced high turning compressor airfoils for low Reynolds number condition. I. Design and optimization
,”
J. Turbomach.
126
,
350
359
(
2004
).
43.
F.
Yang
,
Y.
Wu
,
Z.
Zhang
, and
Z.
Wang
, “
Periodic unsteadiness of tip clearance vortex in an axial compressor rotor
,” in
Proceedings of the Turbomachinery
(
American Society of Mechanical Engineers
,
2020
), Vol.
2E
.
44.
F.
Yang
and
Y.
Wu
, “
The tip leakage vortex breakdown and its possible relationship with rotating instability in a subsonic compressor rotor
,” in
Proceedings of the Turbomachinery—Multidisciplinary Design Approaches, Optimization, and Uncertainty Quantification Radial Turbomachinery Aerodynamics Unsteady Flows in Turbomachinery
(
American Society of Mechanical Engineers
,
2021
), Vol.
2D
.
45.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
,
C. J.
Freitas
,
H.
Coleman
, and
P. E.
Raad
, “
Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
,”
J. Fluids Eng.
130
,
078001
(
2008
).
46.
A. K.
Hilo
,
J.-W.
Hong
,
B.-K.
Ahn
,
B.-G.
Paik
,
S.-W.
Jeong
,
T.-W.
Kim
, and
S.
Kim
, “
Experimental and numerical study on the effects of sweep angle on cavitation around a wedge-section hydrofoil
,”
Phys. Fluids
35
,
077126
(
2023
).
47.
M.
Furukawa
,
M.
Inoue
,
K.
Saiki
, and
K.
Yamada
, “
The role of tip leakage vortex breakdown in compressor rotor aerodynamics
,” in
Proceedings of the Turbomachinery
(
American Society of Mechanical Engineers
,
1998
), Vol.
1
.
48.
M.
Zhu
,
J.
Teng
, and
X.
Qiang
, “
Unsteady near-stall flow mechanisms in a transonic compressor rotor at different rotating speeds
,”
Aerosp. Sci. Technol.
119
,
107124
(
2021
).
49.
H.
Chen
,
Y.
Li
,
D.
Tan
, and
J.
Katz
, “
Visualizations of flow structures in the rotor passage of an axial compressor at the onset of stall
,”
J. Turbomach.
139
,
041008
(
2017
).
50.
T.
Sarpkaya
, “
On stationary and travelling vortex breakdowns
,”
J. Fluid Mech.
45
,
545
559
(
1971
).
51.
H.
Zhang
,
C.
Yang
,
X.
Shi
,
C.
Yang
, and
J.
Chen
, “
Two stall stages in a centrifugal compressor with a vaneless diffuser
,”
Aerosp. Sci. Technol.
110
,
106496
(
2021
).
You do not currently have access to this content.