We apply Lagrangian particle tracking to the two-dimensional single-mode Rayleigh–Taylor (RT) instability to study the dynamical evolution of fluid interface. At the onset of the nonlinear RT stage, we select three ensembles of tracer particles located at the bubble tip, at the spike tip, and inside the spiral of the mushroom structure, which cover most of the interfacial region as the instability develops. Conditional statistics performed on the three sets of particles and over different RT evolution stages, such as the trajectory curvature, velocity, and acceleration, reveals the temporal and spatial flow patterns characterizing the single-mode RT growth. The probability density functions of tracer particle velocity and trajectory curvature exhibit scalings compatible with local flow topology, such as the swirling motion of the spiral particles. Large-scale anisotropy of RT interfacial flows, measured by the ratio of horizontal to vertical kinetic energy, also varies for different particle ensembles arising from the differing evolution patterns of the particle acceleration. In addition, we provide direct evidence to connect the RT bubble re-acceleration to its interaction with the transported fluid from the spike side, due to the shear driven Kelvin–Helmholtz instability. Furthermore, we reveal that the secondary RT instability inside the spiral, which destabilizes the spiraling motion and induces complex flow structures, is generated by the centrifugal acceleration.

1.
R.
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1–14
(
1
),
170
177
(
1882
).
2.
G. I.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
,”
Proc. R. Soc. London, Ser. A
201
(
1065
),
192
196
(
1950
).
3.
Y.
Zhou
, “
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
,”
Phys. Rep.
720–722
,
1
136
(
2017
).
4.
W. D.
Arnett
,
J. N.
Bahcall
,
R. P.
Kirshner
, and
S. E.
Woosley
, “
Supernova 1987a
,”
Annu. Rev. Astron. Astrophys.
27
(
1
),
629
700
(
1989
).
5.
R.
Betti
and
O. A.
Hurricane
, “
Inertial-confinement fusion with lasers
,”
Nat. Phys.
12
(
5
),
435
(
2016
).
6.
H.
Zhang
,
R.
Betti
,
R.
Yan
,
D.
Zhao
,
D.
Shvarts
, and
H.
Aluie
, “
Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions
,”
Phys. Rev. Lett.
121
(
18
),
185002
(
2018
).
7.
H.
Zhang
,
R.
Betti
,
V.
Gopalaswamy
,
R.
Yan
, and
H.
Aluie
, “
Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers
,”
Phys. Rev. E
97
(
1
),
011203
(
2018
).
8.
J.
Xin
,
R.
Yan
,
Z.-H.
Wan
,
D.-J.
Sun
,
J.
Zheng
,
H.
Zhang
,
H.
Aluie
, and
R.
Betti
, “
Two mode coupling of the ablative Rayleigh-Taylor instabilities
,”
Phys. Plasmas
26
(
3
),
032703
(
2019
).
9.
H.
Zhang
,
R.
Betti
,
R.
Yan
, and
H.
Aluie
, “
Nonlinear bubble competition of the multimode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion
,”
Phys. Plasmas
27
(
12
),
122701
(
2020
).
10.
J. C.
Beale
and
R. D.
Reitz
, “
Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model
,”
Atomization Sprays
9
(
6
),
623
(
1999
).
11.
A.
Cui
and
R. L.
Street
, “
Large-eddy simulation of coastal upwelling flow
,”
Environ. Fluid Mech.
4
(
2
),
197
223
(
2004
).
12.
G.
Boffetta
and
A.
Mazzino
, “
Incompressible Rayleigh–Taylor turbulence
,”
Annu. Rev. Fluid Mech.
49
,
119
143
(
2017
).
13.
Y.
Zhou
, “
Rayleigh–Taylor and Richtmyer–Meshkov Instability induced flow, turbulence, and mixing. II
,”
Phys. Rep.
723–725
,
1
160
(
2017
).
14.
D.
Livescu
, “
Turbulence with large thermal and compositional density variations
,”
Annu. Rev. Fluid Mech.
52
,
309
341
(
2020
).
15.
Y.
Zhou
,
R. J.
Williams
,
P.
Ramaprabhu
,
M.
Groom
,
B.
Thornber
,
A.
Hillier
,
W.
Mostert
,
B.
Rollin
,
S.
Balachandar
,
P. D.
Powell
et al, “
Rayleigh–Taylor and Richtmyer-Meshkov instabilities: A journey through scales
,”
Physica D
423
,
132838
(
2021
).
16.
T.
Wei
and
D.
Livescu
, “
Late-time quadratic growth in single-mode Rayleigh-Taylor instability
,”
Phys. Rev. E
86
(
4
),
046405
(
2012
).
17.
X.
Bian
,
H.
Aluie
,
D.
Zhao
,
H.
Zhang
, and
D.
Livescu
, “
Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity
,”
Physica D
403
,
132250
(
2020
).
18.
G.
Zhang
,
A.
Xu
,
D.
Zhang
,
Y.
Li
,
H.
Lai
, and
X.
Hu
, “
Delineation of the flow and mixing induced by Rayleigh–Taylor instability through tracers
,”
Phys. Fluids
33
(
7
),
076105
(
2021
).
19.
R.
Zanella
,
G.
Tegze
,
R. L.
Tellier
, and
H.
Henry
, “
Two-and three-dimensional simulations of Rayleigh–Taylor instabilities using a coupled Cahn–Hilliard/Navier–Stokes model
,”
Phys. Fluids
32
(
12
),
124115
(
2020
).
20.
H.
Liang
,
Z.
Xia
, and
H.
Huang
, “
Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study
,”
Phys. Fluids
33
(
8
),
082103
(
2021
).
21.
J. Y.
Fu
,
H. S.
Zhang
,
H. B.
Cai
,
P. L.
Yao
, and
S. P.
Zhu
, “
Effect of ablation on the nonlinear spike growth for the single-mode ablative Rayleigh–Taylor instability
,”
Matter Radiat. Extremes
8
(
1
),
016901
(
2023
).
22.
T.
Luo
,
J.
Wang
,
C.
Xie
,
M.
Wan
, and
S.
Chen
, “
Effects of compressibility and Atwood number on the single-mode Rayleigh-Taylor instability
,”
Phys. Fluids
32
(
1
),
012110
(
2020
).
23.
V. N.
Goncharov
, “
Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers
,”
Phys. Rev. Lett.
88
(
13
),
134502
(
2002
).
24.
S.-I.
Sohn
, “
Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios
,”
Phys. Rev. E
67
(
2
),
026301
(
2003
).
25.
W.
Liu
,
X.
Wang
,
X.
Liu
,
C.
Yu
,
M.
Fang
, and
W.
Ye
, “
Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers
,”
Sci. Rep.
10
(
1
),
4201
(
2020
).
26.
C.
Liu
,
Y.
Zhang
, and
Z.
Xiao
, “
A unified theoretical model for spatiotemporal development of Rayleigh–Taylor and Richtmyer–Meshkov fingers
,”
J. Fluid Mech.
954
,
A13
(
2023
).
27.
D.
Oron
,
L.
Arazi
,
D.
Kartoon
,
A.
Rikanati
,
U.
Alon
, and
D.
Shvarts
, “
Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws
,”
Phys. Plasmas
8
(
6
),
2883
2889
(
2001
).
28.
P.
Ramaprabhu
,
G.
Dimonte
,
P.
Woodward
,
C.
Fryer
,
G.
Rockefeller
,
K.
Muthuraman
,
P.-H.
Lin
, and
J.
Jayaraj
, “
The late-time dynamics of the single-mode Rayleigh-Taylor instability
,”
Phys. Fluids
24
(
7
),
074107
(
2012
).
29.
H.
Aluie
,
S.
Rai
,
H.
Yin
,
A.
Lees
,
D.
Zhao
,
S. M.
Griffies
,
A.
Adcroft
, and
J. K.
Shang
, “
Effective drift velocity from turbulent transport by vorticity
,”
Phys. Rev. Fluids
7
(
10
),
104601
(
2022
).
30.
D.
Livescu
, “
Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability
,”
Proc. R. Soc. London, Ser. A
371
(
2003
),
20120185
(
2013
).
31.
R.
Wang
,
Y.
Song
,
Z.
Ma
,
Y.
Zhang
,
J.
Wang
,
Y.
Xu
,
L.
Wang
, and
P.
Wang
, “
Scale-to-scale energy transfer in rarefaction-driven Rayleigh–Taylor instability-induced transitional mixing
,”
Phys. Fluids
35
(
2
),
025136
(
2023
).
32.
Z.-X.
Hu
,
Y.-S.
Zhang
,
B.
Tian
,
Z.
He
, and
L.
Li
, “
Effect of viscosity on two-dimensional single-mode Rayleigh-Taylor instability during and after the reacceleration stage
,”
Phys. Fluids
31
(
10
),
104108
(
2019
).
33.
S. A.
Wieland
,
P. E.
Hamlington
,
S. J.
Reckinger
, and
D.
Livescu
, “
Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability
,”
Phys. Rev. Fluids
4
(
9
),
093905
(
2019
).
34.
C.-Q.
Fu
,
Z.
Zhao
,
X.
Xu
,
P.
Wang
,
N.-S.
Liu
,
Z.-H.
Wan
, and
X.-Y.
Lu
, “
Nonlinear saturation of bubble evolution in a two-dimensional single-mode stratified compressible Rayleigh-Taylor instability
,”
Phys. Rev. Fluids
7
(
2
),
023902
(
2022
).
35.
C.-Q.
Fu
,
Z.
Zhao
,
P.
Wang
,
N.-S.
Liu
,
Z.-H.
Wan
, and
X.-Y.
Lu
, “
Bubble re-acceleration behaviours in compressible Rayleigh–Taylor instability with isothermal stratification
,”
J. Fluid Mech.
954
,
A16
(
2023
).
36.
B. J.
Olson
,
J.
Larsson
,
S. K.
Lele
, and
A. W.
Cook
, “
Nonlinear effects in the combined Rayleigh-Taylor/Kelvin-Helmholtz instability
,”
Phys. Fluids
23
(
11
),
114107
(
2011
).
37.
F.
Chen
,
A.
Xu
,
Y.
Zhang
, and
Q.
Zeng
, “
Morphological and non-equilibrium analysis of coupled Rayleigh–Taylor–Kelvin–Helmholtz instability
,”
Phys. Fluids
32
(
10
),
104111
(
2020
).
38.
A.
Hamzehloo
,
P.
Bartholomew
, and
S.
Laizet
, “
Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers
,”
Phys. Fluids
33
(
5
),
054114
(
2021
).
39.
P. E.
Dimotakis
, “
Turbulent mixing
,”
Annu. Rev. Fluid Mech.
37
,
329
356
(
2005
).
40.
F.
Toschi
and
E.
Bodenschatz
, “
Lagrangian properties of particles in turbulence
,”
Annu. Rev. Fluid Mech.
41
,
375
404
(
2009
).
41.
M.
Holzner
,
A.
Liberzon
,
N.
Nikitin
,
B.
Lüthi
,
W.
Kinzelbach
, and
A.
Tsinober
, “
A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation
,”
J. Fluid Mech.
598
,
465
475
(
2008
).
42.
I. I.
Wertgeim
,
M. A.
Zaks
,
R. V.
Sagitov
, and
A. N.
Sharifulin
, “
Instabilities, bifurcations, and nonlinear dynamics in two-dimensional generalizations of Kolmogorov flow
,”
Fluid Dyn.
57
(
4
),
430
443
(
2022
).
43.
H.
Michioka
and
I.
Sumita
, “
Rayleigh-Taylor instability of a particle packed viscous fluid: Implications for a solidifying magma
,”
Geophys. Res. Lett.
32
(
3
),
L03309
, https://doi.org/10.1029/2004GL021827 (
2005
).
44.
Y.-J.
Chou
and
Y.-C.
Shao
, “
Numerical study of particle-induced Rayleigh-Taylor instability: Effects of particle settling and entrainment
,”
Phys. Fluids
28
(
4
),
043302
(
2016
).
45.
M.
Magnani
,
S.
Musacchio
, and
G.
Boffetta
, “
Inertial effects in dusty Rayleigh–Taylor turbulence
,”
J. Fluid Mech.
926
,
A23
(
2021
).
46.
N.
Attal
and
P.
Ramaprabhu
, “
The stability of reacting single-mode Rayleigh–Taylor flames
,”
Physica D
404
,
132353
(
2020
).
47.
A. W.
Cook
, “
Enthalpy diffusion in multicomponent flows
,”
Phys. Fluids
21
(
5
),
055109
(
2009
).
48.
D.
Zhao
and
H.
Aluie
, “
Inviscid criterion for decomposing scales
,”
Phys. Rev. Fluids
3
(
5
),
054603
(
2018
).
49.
D.
Zhao
,
R.
Betti
, and
H.
Aluie
, “
Scale interactions and anisotropy in Rayleigh–Taylor turbulence
,”
J. Fluid Mech.
930
,
A29
(
2022
).
50.
R.
Courant
,
K.
Friedrichs
, and
H.
Lewy
, “
Über die partiellen differenzengleichungen der mathematischen physik
,”
Math. Ann.
100
(
1
),
32
74
(
1928
).
51.
D.
Zhao
and
H.
Aluie
, “
Measuring scale-dependent shape anisotropy by coarse-graining: Application to inhomogeneous Rayleigh-Taylor turbulence
,” arXiv:2307.08918 (
2023
).
52.
W.
Braun
,
F.
De Lillo
, and
B.
Eckhardt
, “
Geometry of particle paths in turbulent flows
,”
J. Turbul.
7
,
N62
(
2006
).
53.
S.
Hasegawa
,
K.
Nishihara
, and
H.
Sakagami
, “
Numerical simulation of mixing by Rayleigh-Taylor instability and its fractal structures
,”
Fractals
4
(
3
),
241
250
(
1996
).
54.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
(
RT Edwards, Inc.
,
2005
).
55.
Y.
Matsumoto
and
M.
Hoshino
, “
Onset of turbulence induced by a Kelvin-Helmholtz vortex
,”
Geophys. Res. Lett.
31
(
2
), L02807, https://doi.org/10.1029/2003GL018195 (
2004
).
56.
H. G.
Lee
and
J.
Kim
, “
Numerical simulation of the three-dimensional Rayleigh–Taylor instability
,”
Comput. Math. Appl.
66
(
8
),
1466
1474
(
2013
).
57.
O.
Schilling
, “
Progress on understanding Rayleigh–Taylor flow and mixing using synergy between simulation, modeling, and experiment
,”
J. Fluids Eng.
142
(
12
),
120802
(
2020
).
58.
J.
Glimm
,
X-l
Li
, and
A.-D.
Lin
, “
Nonuniform approach to terminal velocity for single mode Rayleigh-Taylor instability
,”
Acta Math. Appl. Sin.
18
(
1
),
1
8
(
2002
).
59.
P.
Ramaprabhu
,
G.
Dimonte
,
Y.-N.
Young
,
A. C.
Calder
, and
B.
Fryxell
, “
Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem
,”
Phys. Rev. E
74
(
6
),
066308
(
2006
).

Supplementary Material

You do not currently have access to this content.