Oscillatory flows past two identical circular cylinders are investigated by two-dimensional direct numerical simulations in the parameter space of gap ratio (0.5 ≤ G ≤ 4.0), angle of flow incidence (0° ≤ α ≤ 90°) and Keulegan–Carpenter number (4 ≤ KC ≤ 12) with a constant Reynolds number Re = 150, where G = L/D, KC = UmT/D and Re = UmD/υ with D being the dimeter of the identical cylinders, L the shortest surface-to-surface distance between the two cylinders, Um and T being the velocity amplitude and period of the sinusoidal oscillatory flow, respectively, and α is defined as the angle between the flow direction to the line connecting the centers of the two cylinders. Comparing with the tandem or side-by-side arrangements of twin circular cylinders in oscillatory flows, the staggered twin cylinders (0° < α < 90°) involve more diverse flow regimes, including the periodic, quasi-periodic and chaotic flow states, due to the inherent asymmetric flow interference around the cylinder pair. In addition to introducing four flow regimes for the tandem and side-by-side arrangements, this study newly identifies 11 flow regimes for the staggered twin cylinders. The newly reported flow regimes in this work are collaboratively identified through the flow visualizations, steady streaming, frequency spectra of fluid forces and Lissajous phase diagrams, as well as the temporal-spatial symmetry features of the wake flows. Connecting with the previous work by Zhao and Cheng [“Two-dimensional numerical study of vortex shedding regimes of oscillatory flow past two circular cylinders in side-by-side and tandem arrangements at low Reynolds numbers,” J. Fluid Mech. 751, 1–37 (2014)], this study presents overall regime maps in the KC-α plane for varied gap ratios. It is found that the flow regimes previously and presently identified for the tandem and side-by-side arrangements may also appear for the staggered twin cylinders. The present numerical results suggest the sensitive dependence of the flow regimes on the parameters of KC, α, and G. It is also found that a specific flow regime with narrow parameter bands may appear within another flow regime, forming the abnormal regime hole in the regime map. To understand the profound influence of the control parameters on the flow regime transition, and the relevant temporal-spatial symmetry breaking, the linear Floquet stability analysis is conducted in this work. It was confirmed that the variation of the KC number may result in the Ky symmetry breaking over several periodic flow regimes, while the change of the angle of flow incidence may account for the H2 symmetry covering various periodic and quasi-periodic flow regimes. The stability analysis also explains the temporal flow transition and the abnormal occurrence of the regime holes within either quasi-periodic or chaotic flow regimes.

1.
Anagnostopoulos
,
P.
, and
Dikarou
,
C.
, “
Numerical simulation of viscous oscillatory flow past four cylinders in square arrangement
,”
J. Fluids Struct.
27
(
2
),
212
232
(
2011
).
2.
Anagnostopoulos
,
P.
, and
Dikarou
,
C.
, “
Aperiodic phenomena in planar oscillatory flow past a square arrangement of four cylinders at low pitch ratios
,”
Ocean Eng.
52
,
91
104
(
2012
).
3.
Barkley
,
D.
,
Blackburn
,
H. M.
, and
Sherwin
,
S. J.
, “
Direct optimal growth analysis for timesteppers
,”
Int. J. Numer. Meth. Fluids
57
(
9
),
1435
1458
(
2008
).
4.
Barkley
,
D.
, and
Henderson
,
R. D.
, “
Three-dimensional floquet stability analysis of the wake of a circular cylinder
,”
J. Fluid Mech.
322
,
215
241
(
1996
).
5.
Carini
,
M.
,
Giannetti
,
F.
, and
Auteri
,
F.
, “
On the origin of the flip-flop instability of two side-by-side cylinder wakes
,”
J. Fluid Mech.
742
,
552
576
(
2014
).
6.
Chang
,
W.
,
Constantinescu
,
G.
, and
Tsai
,
W.
, “
Effect of array submergence on flow and coherent structures through and around a circular array of rigid vertical cylinders
,”
Phys. Fluids
32
,
035110
(
2020
).
7.
Chern
,
M.
,
Rajesh Kanna
,
P.
,
Lu
,
Y.
,
Cheng
,
I.
, and
Chang
,
S.
, “
A CFD study of the interaction of oscillatory flows with a pair of side-by-side cylinders
,”
J. Fluids Struct.
26
(
4
),
626
643
(
2010
).
8.
Chern
,
M.
,
Shiu
,
W.
, and
Horng
,
T.
, “
Immersed boundary modeling for interaction of oscillatory flow with cylinder array under effects of flow direction and cylinder arrangement
,”
J. Fluids Struct.
43
,
325
346
(
2013
).
9.
Elston
,
J. R.
,
Blackburn
,
H. M.
, and
Sheridan
,
J.
, “
The primary and secondary instabilities of flow generated by an oscillating circular cylinder
,”
J. Fluid Mech.
550
,
359
(
2006
).
10.
Elston
,
J. R.
,
Sheridan
,
J.
, and
Blackburn
,
H. M.
, “
Two-dimensional floquet stability analysis of the flow produced by an oscillating circular cylinder in quiescent fluid
,”
Eur. J. Mech. B
23
(
1
),
99
106
(
2004
).
11.
Giannetti
,
F.
,
Camarri
,
S.
, and
Luchini
,
P.
, “
Structural sensitivity of the secondary instability in the wake of a circular cylinder
,”
J. Fluid Mech.
651
,
319
337
(
2010
).
12.
Giannetti
,
F.
, and
Luchini
,
P.
, “
Structural sensitivity of the first instability of the cylinder wake
,”
J. Fluid Mech.
581
,
167
197
(
2007
).
13.
Hetz
,
A. A.
,
Dhaubhadel
,
M. N.
, and
Telionis
,
D. P.
, “
Vortex shedding over five in-line cylinders
,”
J. Fluids Struct.
5
(
3
),
243
257
(
1991
).
14.
Honji
,
H.
, “
Streaked flow around an oscillating circular cylinder
,”
J. Fluid Mech.
107
,
509
520
(
1981
).
15.
Hu
,
J. C.
, and
Zhou
,
Y.
, “
Flow structure behind two staggered circular cylinders. Part 1. Downstream evolution and classification
,”
J. Fluid Mech.
607
,
51
80
(
2008
).
16.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
, “
Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces
,”
Comput. Methods Appl. Mech. Eng
119
(
1
),
73
94
(
1994
).
17.
Lin
,
Z.
,
Liang
,
D.
, and
Zhao
,
M.
, “
Flow-mediated interaction between a forced-oscillating cylinder and an elastically mounted cylinder in less regular regimes
,”
Phys. Fluids
35
(
1
),
13608
(
2023
).
18.
Lu
,
L.
,
Guo
,
X.
,
Tang
,
G.
,
Liu
,
M.
,
Chen
,
C.
, and
Xie
,
Z.
, “
Numerical investigation of flow-induced rotary oscillation of circular cylinder with rigid splitter plate
,”
Phys. Fluids
28
(
9
),
93604
(
2016
).
19.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
, “
Sensitivity analysis and passive control of cylinder flow
,”
J. Fluid Mech.
615
,
221
252
(
2008
).
20.
Morison
,
J. R.
,
Obrien
,
M. P.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
, “
The force exerted by surface waves on piles
,”
J. Pet. Tech
2
(
5
),
149
154
(
1950
).
21.
Nithiarasu
,
P.
, and
Zienkiewicz
,
O. C.
, “
Analysis of an explicit and matrix free fractional step method for incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
195
(
41–43
),
5537
5551
(
2006
).
22.
Ongoren
,
A.
, and
Rockwell
,
D.
, “
Flow structure from an oscillating cylinder Part 2. Mode competition in the near wake
,”
J. Fluid Mech.
191
,
225
(
1988
).
23.
Papaioannou
,
G. V.
,
Yue
,
D. K. P.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
, “
Evidence of holes in the Arnold tongues of flow past two oscillating cylinders
,”
Phys. Rev. Lett.
96
(
1
),
14501
(
2006
).
24.
Perdikaris
,
P. G.
,
Kaiktsis
,
L.
, and
Triantafyllou
,
G. S.
, “
Chaos in a cylinder wake due to forcing at the Strouhal frequency
,”
Phys. Fluids
21
(
10
),
101705
(
2009
).
25.
Rastan
,
M. R.
, and
Alam
,
M. M.
, “
Transition of wake flows past two circular or square cylinders in tandem
,”
Phys. Fluids
33
(
8
),
81705
(
2021
).
26.
Ren
,
C.
,
Cheng
,
L.
,
Tong
,
F.
,
Xiong
,
C.
, and
Chen
,
T.
, “
Oscillatory flow regimes around four cylinders in a diamond arrangement
,”
J. Fluid Mech.
877
,
955
1006
(
2019
).
27.
Sarpkaya
,
T.
, and
Cinar
,
M.
, “
Hydrodynamic interference of two cylinders in harmonic flow
,” in
Proceedings of the Offshore Technology Conference
,
Houston, Texas
(
OnePetro
,
1980
), pp.
333
340
.
28.
Shang
,
J.
,
Zhou
,
Q.
,
Alam
,
M. M.
,
Liao
,
H.
, and
Cao
,
S.
, “
Numerical studies of the flow structure and aerodynamic forces on two tandem square cylinders with different chamfered-corner ratios
,”
Phys. Fluids
31
(
7
),
75102
(
2019
).
29.
Sumner
,
D.
, “
Two circular cylinders in cross-flow: A review
,”
J. Fluids Struct.
26
(
6
),
849
899
(
2010
).
30.
Sumner
,
D.
,
Price
,
S. J.
, and
Païdoussis
,
M. P.
, “
Flow-pattern identification for two staggered circular cylinders in cross-flow
,”
J. Fluid Mech.
411
,
263
303
(
2000
).
31.
Suthon
,
P.
, and
Dalton
,
C.
, “
Streakline visualization of the structures in the near wake of a circular cylinder in sinusoidally oscillating flow
,”
J. Fluids Struct.
27
(
7
),
885
902
(
2011
).
32.
Taheri
,
E.
,
Zhao
,
M.
, and
Wu
,
H.
, “
Numerical investigation of the vibration of a circular cylinder in oscillatory flow in oblique directions
,”
J. Mar. Sci. Eng.
10
(
6
),
767
(
2022
).
33.
Taheri
,
E.
,
Zhao
,
M.
,
Wu
,
H.
, and
Tong
,
F.
, “
Numerical investigation of streamwise vibration of an elastically mounted circular cylinder in oscillatory flow
,”
Ocean Eng.
209
,
107300
(
2020
).
34.
Tang
,
T.
,
Yu
,
P.
,
Shan
,
X.
,
Li
,
J.
, and
Yu
,
S.
, “
On the transition behavior of laminar flow through and around a multi-cylinder array
,”
Phys. Fluids
32
,
13601
(
2020
).
35.
Tatsuno
,
M.
, and
Bearman
,
P. W.
, “
A visual study of the flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers and low Stokes numbers
,”
J. Fluid Mech.
211
(
157
),
157
182
(
1990
).
36.
Ting
,
D. S. K.
,
Wang
,
D. J.
,
Price
,
S. J.
, and
Païdoussis
,
M. P.
, “
An experimental study on the fluidelastic forces for two staggered circular cylinders in cross-flow
,”
J. Fluids Struct.
12
(
3
),
259
294
(
1998
).
37.
Tom
,
J. G.
,
Draper
,
S.
,
Milne
,
I. A.
,
Zhou
,
T.
, and
Zhao
,
M.
, “
Observations of pumping and vortex dynamics due to a cylinder oscillating normal to a plane wall
,”
J. Fluid Mech.
952
(
2022
).
38.
Tong
,
F.
,
Cheng
,
L.
, and
Zhao
,
M.
, “
Numerical simulations of steady flow past two cylinders in staggered arrangements
,”
J. Fluid Mech.
765
,
114
149
(
2015a
).
39.
Tong
,
F.
,
Cheng
,
L.
,
Xiong
,
C.
,
Draper
,
S.
,
An
,
H.
, and
Lou
,
X.
, “
Flow regimes for a square cross-section cylinder in oscillatory flow
,”
J. Fluid Mech.
813
,
85
109
(
2017
).
40.
Tong
,
F.
,
Cheng
,
L.
,
Zhao
,
M.
, and
An
,
H.
, “
Oscillatory flow regimes around four cylinders in a square arrangement under small KC and Re conditions
,”
J. Fluid Mech.
769
,
298
336
(
2015b
).
41.
Uzunoğlu
,
B.
,
Tan
,
M.
, and
Price
,
W. G.
, “
Low-Reynolds-number flow around an oscillating circular cylinder using a cell viscous boundary element method
,”
Int. J. Numer. Methods Eng.
50
(
10
),
2317
2338
(
2001
).
42.
Wang
,
J.
,
Shan
,
X.
, and
Liu
,
J.
, “
First instability of the flow past two tandem cylinders with different diameters
,”
Phys. Fluids
34
(
7
),
74112
(
2022
).
43.
Williamson
,
C. H. K.
, “
Sinusoidal flow relative to circular cylinders
,”
J. Fluid Mech.
155
,
141
(
1985
).
44.
Xiong
,
C.
,
Cheng
,
L.
,
Tong
,
F.
, and
An
,
H.
, “
On regime C flow around an oscillating circular cylinder
,”
J. Fluid Mech.
849
,
968
1008
(
2018a
).
45.
Xiong
,
C.
,
Cheng
,
L.
,
Tong
,
F.
, and
An
,
H.
, “
Oscillatory flow regimes for a circular cylinder near a plane boundary
,”
J. Fluid Mech.
844
,
127
161
(
2018b
).
46.
Xu
,
G.
, and
Zhou
,
Y.
, “
Strouhal numbers in the wake of two inline cylinders
,”
Exp. Fluids
37
(
2
),
248
256
(
2004
).
47.
Yang
,
K.
,
Cheng
,
L.
,
An
,
H.
,
Bassom
,
A. P.
, and
Zhao
,
M.
, “
The effect of a piggyback cylinder on the flow characteristics in oscillatory flow
,”
Ocean Eng.
62
,
45
55
(
2013
).
48.
Zhao
,
M.
, “
Flow induced by an oscillating circular cylinder close to a plane boundary in quiescent fluid
,”
J. Fluid Mech.
897
,
A19
(
2020
).
49.
Zhao
,
M.
, and
Cheng
,
L.
, “
Two-dimensional numerical study of vortex shedding regimes of oscillatory flow past two circular cylinders in side-by-side and tandem arrangements at low Reynolds numbers
,”
J. Fluid Mech.
751
,
1
37
(
2014
).
50.
Zhou
,
Y.
, and
Yiu
,
M. W.
, “
Flow structure, momentum and heat transport in a two-tandem-cylinder wake
,”
J. Fluid Mech.
548
,
17
48
(
2006
).
51.
Zhou
,
Y.
, and
Alam
,
M. M.
, “
Wake of two interacting circular cylinders: a review
,”
Int. J. Heat Fluid Flow
62
,
510
537
(
2016
).
52.
Zienkiewicz
,
O. C.
, and
Codina
,
R.
, “
A general algorithm for compressible and incompressible flow-Part I. The split, characteristic-based scheme
,”
Numer. Methods Fluids
20
(
8–9
),
869
885
(
1995
).
You do not currently have access to this content.