This paper concerns virus droplet simulations in a typical cruiser's cabin. Effects of ventilation rates and positions of the coughing person were investigated. The study also emphasizes the importance of including evaporation models to simulate the process accurately. A higher ventilation rate is not always the best strategy to avoid the spread of airborne diseases, as saliva droplets can spread further at high ventilation rates. Regardless of the ventilation strategy, they evaporate faster than the room's air renewal. One should aim for minimum droplet spreading inside the cabin and different ventilation strategies for occupied cabins. The authors propose using ventilation systems at medium flow rates of around 120 m3/h or three air changes per hour when a cabin is occupied. This value is also close to the recommended value of 108 m3/h from the latest standard by the American Society of Heating, Refrigerating and Air-Conditioning Engineers. The suggested value minimizes droplet spreading while maintaining good ventilation, comfort, and energy consumption.

1.
WHO
.
WHO Coronavirus (Covid-19) Dashboard
(
World Health Organization
,
2023
).
2.
D.
Jamison
,
S.
Anand Narayanan
,
N.
Trovão
,
J. W.
Guarnieri
,
M. J.
Topper
,
P. M.
Moraes-Vieira
,
V.
Zaksas
,
K. K.
Singh
,
E. S.
Wurtele
, and
A.
Beheshti
, “
A comprehensive SARS-CoV-2 and Covid-19 review. Part 1: Intracellular overdrive for SARS-CoV-2 infection
,”
Eur. J. Hum. Genet.
30
,
889
(
2022
).
3.
T.
Dbouk
and
D.
Drikakis
, “
Correcting pandemic data analysis through environmental fluid dynamics
,”
Phys. Fluids
33
,
067116
(
2021
).
4.
T.
Dbouk
and
D.
Drikakis
, “
Fluid dynamics and epidemiology: Seasonality and transmission dynamics
,”
Phys. Fluids
33
,
021901
(
2021
).
5.
N.
Christakis
,
M.
Politis
,
P.
Tirchas
,
M.
Achladianakis
,
E.
Avgenikou
,
C.
Matthaiou
,
M.
Kalykaki
,
A.
Kyriakaki
,
P.
Paraschis
,
E.
Pilios
, and
G.
Kossioris
, “
Covid-liberty, a machine learning computational framework for the study of the Covid-19 pandemic in Europe. Part 1: Building of an artificial neural network and analysis and parametrization of key factors which influence the spread of the virus
,”
Int. J. Neural Netw. Adv. Appl.
8
,
12
26
(
2021
).
6.
N.
Christakis
,
P.
Tirchas
,
M.
Politis
,
M.
Achladianakis
,
E.
Avgenikou
, and
G.
Kossioris
, “
Covid-liberty, a machine learning computational framework for the study of the Covid-19 pandemic in Europe. Part 2: Setting up the framework with ensemble modeling
,”
Int. J. Neural Netw. Adv. Appl.
8
,
27
42
(
2021
).
7.
M.
Khan
and
A.
Atangana
, “
Mathematical modeling and analysis of Covid-19: A study of new variant omicron
,”
Physica A
599
,
127452
(
2022
).
8.
T.
Dbouk
and
D.
Drikakis
, “
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
,
053310
(
2020
).
9.
T.
Dbouk
and
D.
Drikakis
, “
On respiratory droplets and face masks
,”
Phys. Fluids
32
,
063303
(
2020
).
10.
T.
Dbouk
and
D.
Drikakis
, “
Weather impact on airborne coronavirus survival
,”
Phys. Fluids
32
,
093312
(
2020
).
11.
T.
Dbouk
and
D.
Drikakis
, “
On airborne virus transmission in elevators and confined spaces
,”
Phys. Fluids
33
,
011905
(
2021
).
12.
S.
Verma
,
M.
Dhanak
, and
J.
Frankenfield
, “
Visualizing the effectiveness of face masks in obstructing respiratory jets
,”
Phys. Fluids
32
,
061708
(
2020
).
13.
P.
Prasanna Simha
and
P. S.
Mohan Rao
, “
Universal trends in human cough airflows at large distances
,”
Phys. Fluids
32
,
081905
(
2020
).
14.
M.-R.
Pendar
and
J. C.
Páscoa
, “
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough
,”
Phys. Fluids
32
,
083305
(
2020
).
15.
G.
Busco
,
S. R.
Yang
,
J.
Seo
, and
Y. A.
Hassan
, “
Sneezing and asymptomatic virus transmission
,”
Phys. Fluids
32
,
073309
(
2020
).
16.
M.
Abuhegazy
,
K.
Talaat
,
O.
Anderoglu
, and
S. V.
Poroseva
, “
Numerical investigation of aerosol transport in a classroom with relevance to Covid-19
,”
Phys. Fluids
32
,
103311
(
2020
).
17.
T.
Dbouk
,
F.
Roger
, and
D.
Drikakis
, “
Reducing indoor virus transmission using air purifiers
,”
Phys. Fluids
33
,
103301
(
2021
).
18.
K.
Talaat
,
M.
Abuhegazy
,
O. A.
Mahfoze
,
O.
Anderoglu
, and
S. V.
Poroseva
, “
Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation
,”
Phys. Fluids
33
,
033312
(
2021
).
19.
W.
Wang
,
F.
Wang
,
D.
Lai
, and
Q.
Chen
, “
Evaluation of SARS-CoV-2 transmission and infection in airliner cabins
,”
Indoor Air
32
,
e12979
(
2022
).
20.
F.
Wang
,
T.
Zhang
,
R.
You
, and
Q.
Chen
, “
Evaluation of infection probability of Covid-19 in different types of airliner cabins
,”
Build. Environ.
234
,
110159
(
2023
).
21.
T.
Dbouk
and
D.
Drikakis
, “
On pollen and airborne virus transmission
,”
Phys. Fluids
32
,
063313
(
2020
).
22.
S.
Bushwick
,
T.
Lewis
, and
A.
Montañez
, “
Evaluating COVID risk on planes, trains and automobiles
,” Scientific American (
2020
).
23.
V.
Mathai
,
A.
Das
,
J.
Bailey
, and
K.
Breuer
, “
Airflows inside passenger cars and implications for airborne disease transmission
,”
Sci. Adv.
7
,
eabe0166
(
2021
).
24.
V.
Mathai
,
A.
Das
, and
K.
Breuer
, “
Aerosol transmission in passenger car cabins: Effects of ventilation configuration and driving speed
,”
Phys. Fluids
34
,
021904
(
2022
).
25.
K.
Luo
,
Z.
Lei
,
Z.
Hai
,
S.
Xiao
,
J.
Rui
,
H.
Yang
,
X.
Jing
,
H.
Wang
,
Z.
Xie
,
P.
Luo
,
W.
Li
,
Q.
Li
,
H.
Tan
,
Z.
Xu
,
Y.
Yang
,
S.
Hu
, and
T.
Chen
, “
Transmission of SARS-CoV-2 in public transportation vehicles: A case study in Hunan Province, China
,”
Open Forum Infect. Dis.
7
,
ofaa430
(
2020
).
26.
Y.
Shen
,
C.
Li
,
H.
Dong
,
Z.
Wang
,
L.
Martinez
,
Z.
Sun
,
A.
Handel
,
Z.
Chen
,
E.
Chen
,
M. H.
Ebell
,
F.
Wang
,
B.
Yi
,
H.
Wang
,
X.
Wang
,
A.
Wang
,
B.
Chen
,
Y.
Qi
,
L.
Liang
,
Y.
Li
,
F.
Ling
,
J.
Chen
, and
G.
Xu
, “
Community outbreak investigation of SARS-CoV-2 transmission among bus riders in Eastern China
,”
JAMA Intern. Med.
180
,
1665
1671
(
2020
).
27.
Z.
Zhang
,
T.
Han
,
K. H.
Yoo
,
J.
Capecelatro
,
A. L.
Boehman
, and
K.
Maki
, “
Disease transmission through expiratory aerosols on an urban bus
,”
Phys. Fluids
33
,
015116
(
2021
).
28.
P.
Azimi
,
Z.
Keshavarz
,
J.
Laurent
,
B. R.
Stephens
, and
J. G.
Allen
, “
Mechanistic transmission modeling of Covid-19 on the Diamond Princess cruise ship demonstrates the importance of aerosol transmission
,”
Proc. Natl Acad. Sci. U. S. A.
118
,
e2015482118
(
2020
).
29.
L.
Moriarty
,
M.
Plucinski
,
B. J.
Marston
et al, “
Public health responses to Covid-19 outbreaks on cruise ships – worldwide, February–March 2020
,”
MMWR Morb. Mortal Wkly Rep.
69
,
347
352
(
2020
).
30.
E. C.
Rosca
,
C.
Heneghan
,
E. A.
Spencer
,
J.
Brassey
,
A.
Plüddemann
,
I. J.
Onakpoya
,
D.
Evans
,
J. M.
Conly
, and
T.
Jefferson
, “
Transmission of SARS-CoV-2 associated with cruise ship travel: A systematic review
,”
Trop. Med. Infect. Dis.
7
,
290
(
2022
).
31.
L.
Huang
,
I.
Riyadi
,
S.
Utama
,
M.
Li
,
P.
Sun
, and
G.
Thomas
, “
Covid-19 transmission inside a small passenger vessel: Risks and mitigation
,”
Ocean Eng.
255
,
111486
(
2022
).
32.
A.
Saunders
, “
Cruise lines change ship ventilation systems as part of overall Covid strategy
,” Cruise Critic (
2020
).
33.
K.
Wiles
, “
Cruise ship AC systems could promote rapid coronavirus spread, Prof says
,” Purdue University News (
2020
).
34.
O.
Almilaji
, “
Air recirculation role in the spread of COVID-19 onboard the Diamond Princess Cruise ship during a quarantine period
,”
Aerosol Air Qual. Res.
21
,
200495
(
2021
).
35.
J.
Zhou
,
S. P.
Chen
,
W. W.
Shi
,
M.
Kanrak
, and
J.
Ge
, “
The impacts of COVID-19 on the cruise industry based on an empirical study in China
,”
Mar. Policy
153
,
105631
(
2023
).
36.
M. Z.
Bazant
and
J. W. M.
Bush
, “
A guideline to limit indoor airborne transmission of COVID-19
,”
Proc. Natl Acad. Sci. U. S. A.
118
,
e2018995118
(
2021
).
37.
CDC.
COVID-19 Ventilation in Buildings 2023
(
The Centers for Disease Control and Prevention
,
2023
).
38.
ASHRAE
.
ANSI/ASHRAE Standard 241–2023, Control of Infectious Aerosols
(
ASHRAE
,
2023
).
39.
ASHRAE
.
ANSI/ASHRAE Standard 62.1–2019, Ventilation and Acceptable Indoor Air Quality
(
ASHRAE
,
2019
).
40.
WHO.
Roadmap to Improve and Ensure Good Indoor Ventilation in the Context of COVID-19
(
World Health Organization
,
2021
).
41.
REHVA
.
COVID-19 Guidance 4.1, How to Operate HVAC and Other Building Service Systems to Prevent the Spread of the Coronavirus (SARS-CoV-2) Disease (COVID-19) in Workplaces
(
Federation of European Heating, Ventilation and Air Conditioning Associations
,
2021
).
42.
Y.
Li
,
P.
Cheng
, and
W.
Jia
, “
Poor ventilation worsens short-range airborne transmission of respiratory infection
,”
Indoor Air
32
,
e12946
(
2022
).
43.
FPS.
Legal Framework Regarding Indoor Air Quality
(
Federal Public Service - Public Health
,
2022
).
44.
J. G.
Allen
and
J. D.
Macomber
,
Healthy Buildings: How Indoor Spaces Can Make You Sick-Or Keep You Well
,
2nd ed
. (
Harvard University Press
,
2022
).
45.
ASHRAE
.
ANSI/ASHRAE Standard 62.2–2019, Ventilation and Acceptable Indoor Air Quality in Residential Buildings
(
ASHRAE
,
2019
).
46.
R.
Dhand
and
J.
Li
, “
Coughs and sneezes: Their role in transmission of respiratory viral infections, including SARS-CoV-2
,”
Am. J. Respir. Crit. Care Med.
202
,
651
659
(
2020
).
47.
M.
Zhao
,
C.
Zhou
,
T.
Chan
,
C.
Tu
,
Y.
Liu
, and
M.
Yu
, “
Assessment of Covid-19 aerosol transmission in a university campus food environment using a numerical method
,”
Geosci. Front.
13
,
101353
(
2022
).
48.
W.
van der Reijden
,
E.
Veerman
, and
A.
Nieuw Amerongen
, “
Shear rate dependent viscoelastic behavior of human glandular salivas
,”
Biorheology
30
,
141
152
(
1993
).
49.
B. E.
Scharfman
,
A. H.
Techet
,
J. W. M.
Bush
, and
L.
Bourouiba
, “
Visualization of sneeze ejecta: Steps of fluid fragmentation leading to respiratory droplets
,”
Exp. Fluids
57
,
24
(
2016
).
50.
S.
Zhu
,
S.
Kato
, and
J. H.
Yang
, “
Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment
,”
Build. Environ.
41
,
1691
1702
(
2006
).
51.
X.
Xie
,
Y.
Li
,
H.
Sun
, and
L.
Liu
, “
Exhaled droplets due to talking and coughing
,”
J. R. Soc. Interface
6
,
703
714
(
2009
).
52.
P.
Rosin
and
E.
Rammler
, “
The laws governing the fineness of powdered coal
,”
J. Inst. Fuel
7
,
29
36
(
1933
).
53.
W.
Weibull
, “
A statistical distribution function of wide applicability
,”
J. Appl. Mech.
18
,
293
297
(
1951
).
54.
Y.
Liu
,
Y.
Laiguang
,
Y.
Weinong
, and
L.
Feng
, “
On the size distribution of cloud droplets
,”
Atmos. Res.
35
,
201
216
(
1995
).
55.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops, part I
,”
Chem. Eng. Prog.
48
,
141
146
(
1952
).
56.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops, part II
,”
Chem. Eng. Prog.
48
,
173
180
(
1952
).
57.
Siemens Digital Industries Software
.
Simcenter STAR-CCM+, Version 2210
(
Siemens Digital Industries Software
,
2022
).
58.
L.
Schiller
and
A.
Naumann
, “
Ueber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung
,”
VDI Zeits.
77
,
318
320
(
1933
).
59.
L. K.
Norvihoho
,
H.
Li
,
Z.-F.
Zhou
,
J.
Yin
,
S.-Y.
Chen
,
D.-Q.
Zhu
, and
B.
Chen
, “
Dispersion of expectorated cough droplets with seasonal influenza in an office
,”
Phys. Fluids
35
,
083302
(
2023
).
60.
R. C.
Reid
,
J. M.
Prausnitz
, and
B. E.
Poling
,
The Properties of Gases and Liquids
,
4th ed.
(
McGraw-Hill
,
1987
).
61.
R.
Bhardwaj
and
A.
Agrawal
, “
Likelihood of survival of coronavirus in a respiratory droplet deposited on a solid surface
,”
Phys. Fluids
32
,
061704
(
2020
).
62.
L.-D.
Chen
, “
Effects of ambient temperature and humidity on droplet lifetime – A perspective of exhalation sneeze droplets with Covid-19 virus transmission
,”
Int. J. Hygiene Environ. Health
229
,
113568
(
2020
).
63.
H.
Li
,
F. Y.
Leong
,
G.
Xu
,
Z.
Ge
,
C. W.
Kang
, and
K. H.
Lim
, “
Dispersion of evaporating cough droplets in tropical outdoor environment
,”
Phys. Fluids
32
,
113301
(
2020
).
64.
X.
Xie
,
Y.
Li
,
T.
Zhang
, and
H.
Fang
, “
Bacterial survival in evaporating deposited droplets on a Teflon-coated surface
,”
Appl. Microbiol. Biotechnol.
73
,
703
712
(
2006
).
65.
N.
van Doremalen
,
T.
Bushmaker
,
D. H.
Morris
,
M. G.
Holbrook
,
A.
Gamble
,
B. N.
Williamson
,
A.
Tamin
,
J. L.
Harcourt
,
N. J.
Thornburg
,
S. I.
Gerber
,
J. O.
Lloyd-Smith
,
E.
de Wit
, and
V. J.
Munster
, “
Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1
,”
New Engl. J.
382
,
1564
1567
(
2020
).
You do not currently have access to this content.