Viscoelastic focusing has emerged as a promising method for label-free and passive manipulation of micro and nanoscale bioparticles. However, the design of microfluidic devices for viscoelastic particle focusing requires a thorough comprehensive understanding of the flow condition and operational parameters that lead to the desired behavior of microparticles. While recent advancements have been made, viscoelastic focusing is not fully understood, particularly in straight microchannels with rectangular cross sections. In this work, we delve into inertial, elastic, and viscoelastic focusing of biological cells in rectangular cross-section microchannels. By systematically varying degrees of fluid elasticity and inertia, we investigate the underlying mechanisms behind cell focusing. Our approach involves injecting cells into devices with a fixed, non-unity aspect ratio and capturing their images from two orientations, enabling the extrapolation of cross-sectional equilibrium positions from two dimensional (2D) projections. We characterized the changes in hydrodynamic focusing behaviors of cells based on factors, such as cell size, flow rate, and fluid characteristics. These findings provide insights into the flow characteristics driving changes in equilibrium positions. Furthermore, they indicate that viscoelastic focusing can enhance the detection accuracy in flow cytometry and the sorting resolution for size-based particle sorting applications. By contributing to the advancement of understanding viscoelastic focusing in rectangular microchannels, this work provides valuable insight and design guidelines for the development of devices that harness viscoelastic focusing. The knowledge gained from this study can aid in the advancement of viscoelastic particle manipulation technique and their application in various fields.

1.
S.
Kalyan
,
C.
Torabi
,
H.
Khoo
,
H. W.
Sung
,
S.-E.
Choi
,
W.
Wang
,
B.
Treutler
,
D.
Kim
, and
S. C.
Hur
, “
Inertial microfluidics enabling clinical research
,”
Micromachines
12
(
3
),
257
(
2021
).
2.
J.
Zhou
and
I.
Papautsky
, “
Viscoelastic microfluidics: Progress and challenges
,”
Microsyst. Nanoeng.
6
(
113
),
1
24
(
2020
).
3.
H.
Amini
,
W.
Lee
, and
D.
Di Carlo
, “
Inertial microfluidic physics
,”
Lab Chip
14
(
15
),
2739
2761
(
2014
).
4.
S. C.
Hur
,
H. T. K.
Tse
, and
D.
Di Carlo
, “
Sheathless inertial cell ordering for extreme throughput flow cytometry
,”
Lab Chip
10
(
3
),
274
280
(
2010
).
5.
Y.-H.
Choi
,
J.-A.
Kim
, and
W.
Lee
, “
Changes of inertial focusing position in a triangular channel depending on droplet deformability and size
,”
Micromachines
11
(
9
),
839
(
2020
).
6.
D.
Di Carlo
,
J. F.
Edd
,
K. J.
Humphry
,
H. A.
Stone
, and
M.
Toner
, “
Particle segregation and dynamics in confined flows
,”
Phys. Rev. Lett.
102
(
9
),
094503
(
2009
).
7.
D.
Di Carlo
, “
Inertial microfluidics
,”
Lab Chip
9
(
21
),
3038
3046
(
2009
).
8.
P.
Mukherjee
,
X.
Wang
,
J.
Zhou
, and
I.
Papautsky
, “
Single stream inertial focusing in low aspect-ratio triangular microchannels
,”
Lab Chip
19
(
1
),
147
157
(
2019
).
9.
K. W.
Seo
,
H. J.
Byeon
,
H. K.
Huh
, and
S. J.
Lee
, “
Particle migration and single-line particle focusing in microscale pipe flow of viscoelastic fluids
,”
RSC Adv.
4
(
7
),
3512
3520
(
2014
).
10.
F.
Del Giudice
,
G.
D'Avino
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Effect of fluid rheology on particle migration in a square-shaped microchannel
,”
Microfluid. Nanofluid.
19
(
1
),
95
104
(
2015
).
11.
H.
Lim
,
J.
Nam
, and
S.
Shin
, “
Lateral migration of particles suspended in viscoelastic fluids in a microchannel flow
,”
Microfluid. Nanofluid.
17
(
4
),
683
692
(
2014
).
12.
A. M.
Leshansky
,
A.
Bransky
,
N.
Korin
, and
U.
Dinnar
, “
Tunable nonlinear viscoelastic ‘focusing’ in a microfluidic device
,”
Phys. Rev. Lett.
98
(
23
),
234501
(
2007
).
13.
C.
Liu
,
C.
Xue
,
X.
Chen
,
L.
Shan
,
Y.
Tian
, and
G.
Hu
, “
Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels
,”
Anal. Chem.
87
(
12
),
6041
6048
(
2015
).
14.
N.
Xiang
,
Q.
Dai
, and
Z.
Ni
, “
Multi-train elasto-inertial particle focusing in straight microfluidic channels
,”
Appl. Phys. Lett.
109
(
13
),
134101
(
2016
).
15.
M. A.
Raoufi
,
A.
Mashhadian
,
H.
Niazmand
,
M.
Asadnia
,
A.
Razmjou
, and
M. E.
Warkiani
, “
Experimental and numerical study of elasto-inertial focusing in straight channels
,”
Biomicrofluidics
13
(
3
),
034103
(
2019
).
16.
J.
Jang
,
U.
Kim
,
T.
Kim
, and
Y.
Cho
, “
Elasto-inertial particle focusing in microchannel with T-shaped cross-section
,”
Appl. Sci.
12
(
20
),
10552
(
2022
).
17.
Z.
Jia
,
J.
Wu
,
X.
Wu
,
Q.
Yuan
,
Y.
Chan
,
B.
Liu
,
J.
Zhang
, and
S.
Yan
, “
Size-tunable elasto-inertial sorting of Haematococcus pluvialis in the ultrastretchable microchannel
,”
Anal. Chem.
95
,
13338
(
2023
).
18.
S. C.
Hur
,
A. J.
Mach
, and
D.
Di Carlo
, “
High-throughput size-based rare cell enrichment using microscale vortices
,”
Biomicrofluidics
5
(
2
),
22206
(
2011
).
19.
H.
Fallahi
,
S.
Yadav
,
H.-P.
Phan
,
H.
Ta
,
J.
Zhang
, and
N.-T.
Nguyen
, “
Size-tuneable isolation of cancer cells using stretchable inertial microfluidics
,”
Lab Chip
21
(
10
),
2008
2018
(
2021
).
20.
J.
Nam
,
H.
Lim
,
D.
Kim
,
H.
Jung
, and
S.
Shin
, “
Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid
,”
Lab Chip
12
(
7
),
1347
(
2012
).
21.
T.
Zhang
,
Z.-Y.
Hong
,
S.-Y.
Tang
,
W.
Li
,
D. W.
Inglis
,
Y.
Hosokawa
,
Y.
Yalikun
, and
M.
Li
, “
Focusing of sub-micrometer particles in microfluidic devices
,”
Lab Chip
20
(
1
),
35
53
(
2020
).
22.
J. Y.
Kim
,
S. W.
Ahn
,
S. S.
Lee
, and
J. M.
Kim
, “
Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow
,”
Lab Chip
12
(
16
),
2807
2814
(
2012
).
23.
Y.
Zhou
,
Z.
Ma
,
M.
Tayebi
, and
Y.
Ai
, “
Submicron particle focusing and exosome sorting by wavy microchannel structures within viscoelastic fluids
,”
Anal. Chem.
91
(
7
),
4577
4584
(
2019
).
24.
H.
Feng
,
A. R.
Jafek
,
B.
Wang
,
H.
Brady
,
J. J.
Magda
, and
B. K.
Gale
, “
Viscoelastic particle focusing and separation in a spiral channel
,”
Micromachines
13
(
3
),
361
(
2022
).
25.
F.
Tian
,
W.
Zhang
,
L.
Cai
,
S.
Li
,
G.
Hu
,
Y.
Cong
,
C.
Liu
,
T.
Li
, and
J.
Sun
, “
Microfluidic co-flow of Newtonian and viscoelastic fluids for high-resolution separation of microparticles
,”
Lab Chip
17
(
18
),
3078
3085
(
2017
).
26.
J.
Cruz
,
T.
Graells
,
M.
Walldén
, and
K.
Hjort
, “
Inertial focusing with sub-micron resolution for separation of bacteria
,”
Lab Chip
19
(
7
),
1257
1266
(
2019
).
27.
H.
Pouraria
,
R.
Foudazi
, and
J. P.
Houston
, “
Exploitation of elasto‐inertial fluid flow for the separation of nano‐sized particles: Simulating the isolation of extracellular vesicles
,”
Cytometry, Part A
(published online
2023
).
28.
A. J.
Mach
and
D.
Di Carlo
, “
Continuous scalable blood filtration device using inertial microfluidics
,”
Biotechnol. Bioeng.
107
(
2
),
302
311
(
2010
).
29.
D.
Yuan
,
Q.
Zhao
,
S.
Yan
,
S.-Y.
Tang
,
Y.
Zhang
,
G.
Yun
,
N.-T.
Nguyen
,
J.
Zhang
,
M.
Li
, and
W.
Li
, “
Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics
,”
Lab Chip
19
(
17
),
2811
2821
(
2019
).
30.
M. M.
Naderi
,
L.
Barilla
,
J.
Zhou
,
I.
Papautsky
, and
Z.
Peng
, “
Elasto-inertial focusing mechanisms of particles in shear-thinning viscoelastic fluid in rectangular microchannels
,”
Micromachines
13
(
12
),
2131
(
2022
).
31.
G.
Holzner
,
S.
Stavrakis
, and
A.
deMello
, “
Elasto-inertial focusing of mammalian cells and bacteria using low molecular, low viscosity PEO solutions
,”
Anal. Chem.
89
(
21
),
11653
11663
(
2017
).
32.
S. H.
Yang
,
D. J.
Lee
,
J. R.
Youn
, and
Y. S.
Song
, “
Multiple-line particle focusing under viscoelastic flow in a microfluidic device
,”
Anal. Chem.
89
(
6
),
3639
3647
(
2017
).
33.
G.
Romeo
,
G.
D'Avino
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Viscoelastic flow-focusing in microchannels: Scaling properties of the particle radial distributions
,”
Lab Chip
13
(
14
),
2802
2807
(
2013
).
34.
P. H.
Brown
,
A.
Balbo
,
H.
Zhao
,
C.
Ebel
, and
P.
Schuck
, “
Density contrast sedimentation velocity for the determination of protein partial-specific volumes
,”
PloS One
6
(
10
),
e26221
(
2011
).
35.
R. J.
Poole
, “
The Deborah and Weissenberg numbers
,”
Rheol. Bull.
53
(
2
),
32
39
(
2012
).
36.
J.
Miyazaki
,
K.
Araki
,
E.
Yamato
,
H.
Ikegami
,
T.
Asano
,
Y.
Shibasaki
,
Y.
Oka
, and
K.
Yamamura
, “
Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: Special reference to expression of glucose transporter isoforms
,”
Endocrinology
127
(
1
),
126
(
1990
).
37.
W.
Lee
,
H.
Amini
,
H. A.
Stone
, and
D.
Di Carlo
, “
Dynamic self-assembly and control of microfluidic particle crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
52
),
22413
22418
(
2010
).
38.
See https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm for FDA Drug Databases “
Inactive ingredient search for approved drug products
” (accessed September 5, 2023).
39.
X.
Lu
and
X.
Xuan
, “
Elasto-inertial pinched flow fractionation for continuous shape-based particle separation
,”
Anal. Chem.
87
(
22
),
11523
11530
(
2015
).
40.
F.
Tian
,
L.
Cai
,
J.
Chang
,
S.
Li
,
C.
Liu
,
T.
Li
, and
J.
Sun
, “
Label-free isolation of rare tumor cells from untreated whole blood by interfacial viscoelastic microfluidics
,”
Lab Chip
18
(
22
),
3436
3445
(
2018
).
41.
D.
Yuan
,
S. H.
Tan
,
Q.
Zhao
,
S.
Yan
,
R.
Sluyter
,
N. T.
Nguyen
,
J.
Zhang
, and
W.
Li
, “
Sheathless Dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid
,”
RSC Adv.
7
(
6
),
3461
3469
(
2017
).
42.
S.
Yang
,
S. S.
Lee
,
S. W.
Ahn
,
K.
Kang
,
W.
Shim
,
G.
Lee
,
K.
Hyun
, and
J. M.
Kim
, “
Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity
,”
Soft Matter
8
(
18
),
5011
(
2012
).
43.
S.
Cha
,
T.
Shin
,
S. S.
Lee
,
W.
Shim
,
G.
Lee
,
S. J.
Lee
,
Y.
Kim
, and
J. M.
Kim
, “
Cell stretching measurement utilizing viscoelastic particle focusing
,”
Anal. Chem.
84
(
23
),
10471
10477
(
2012
).
44.
K.
Won Seo
,
Y.
Ran Ha
, and
S.
Joon Lee
, “
Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy
,”
Appl. Phys. Lett.
104
(
21
),
213702
(
2014
).
45.
See https://www.mathworks.com/help/images/detecting-a-cell-using-image-segmentation.html for Mathworks Documentation “
Detect cell using edge detection and morphology – MATLAB & Simulink example
” (accessed on September 5, 2023).
46.
J. F.
Edd
,
D.
Di Carlo
,
K. J.
Humphry
,
S.
Köster
,
D.
Irimia
,
D. A.
Weitz
, and
M.
Toner
, “
Controlled encapsulation of single-cells into monodisperse picolitre drops
,”
Lab Chip
8
(
8
),
1262
1264
(
2008
).
47.
G.
D'Avino
,
G.
Romeo
,
M. M.
Villone
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Single line particle focusing induced by viscoelasticity of the suspending liquid: Theory, experiments and simulations to design a micropipe flow-focuser
,”
Lab Chip
12
(
9
),
1638
1645
(
2012
).
48.
D.
Li
and
X.
Xuan
, “
Fluid rheological effects on particle migration in a straight rectangular microchannel
,”
Microfluid. Nanofluid.
22
(
4
),
49
(
2018
).
49.
X.
Lu
,
L.
Zhu
,
R.-M.
Hua
, and
X.
Xuan
, “
Continuous sheath-free separation of particles by shape in viscoelastic fluids
,”
Appl. Phys. Lett.
107
(
26
),
264102
(
2015
).
50.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
,
N.
Kaval
,
C. J.
Seliskar
, and
I.
Papautsky
, “
Inertial microfluidics for sheath-less high-throughput flow cytometry
,”
Biomed. Microdevices
12
(
2
),
187
195
(
2010
).
51.
Y.
Zhang
,
Y.
Zhao
,
T.
Cole
,
J.
Zheng
,
Bayinqiaoge
,
J.
Guo
, and
S.-Y.
Tang
, “
Microfluidic flow cytometry for blood-based biomarker analysis
,”
Analyst
147
(
13
),
2895
2917
(
2022
).
52.
M.
Asghari
,
M.
Serhatlioglu
,
B.
Ortaç
,
M. E.
Solmaz
, and
C.
Elbuken
, “
Sheathless microflow cytometry using viscoelastic fluids
,”
Sci. Rep.
7
(
1
),
12342
(
2017
).
53.
M.
Wang
,
H.
Liang
,
X.
Chen
,
D.
Chen
,
J.
Wang
,
Y.
Zhang
, and
J.
Chen
, “
Developments of conventional and microfluidic flow cytometry enabling high-throughput characterization of single cells
,”
Biosensors
12
(
7
),
443
(
2022
).
54.
H. B.
Evans
,
S.
Gormulu
,
B.
Aksak
,
L.
Castillo
, and
J.
Sheng
, “
Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars
,”
Sci. Rep.
6
(
1
),
28753
(
2016
).
55.
R.
Budwig
, “
Refractive index matching methods for liquid flow investigations
,”
Exp. Fluids
17
(
5
),
350
355
(
1994
).
56.
G.
Li
,
G. H.
McKinley
, and
A. M.
Ardekani
, “
Dynamics of particle migration in channel flow of viscoelastic fluids
,”
J. Fluid Mech.
785
,
486
505
(
2015
).

Supplementary Material

You do not currently have access to this content.