The physics of macromolecular orientation has been used to explain the elasticity of polymeric liquids. Specifically, by first sculpting a rigid bead–rod likeness of the macromolecule, we can then derive its hydrodynamic resistance to orientation. The solution for the orientation distribution function has then been used, by integration in phase space, to get rheological material functions in both (i) small- and (ii) large-amplitude oscillatory shear flow, including its limiting case, and (iii) steady shear flow. However, rheological material functions in steady homogeneous extension from rigid bead–rod theory remain elusive. In this paper, we derive the orientation distribution function, and the rheological material functions, for suspensions of general rigid bead–rod structures. We focus on the time-steady viscosities in extension, and we first do so for general extensional kinematics. We then obtain the viscosities in steady extension for (iv) uniaxial extension, (v) planar extension, and (vi) biaxial extension. We close with a worked example, in which we use our new result for the steady uniaxial extensional viscosity to build a bridge between the macromolecular theory and the Oldroyd framework for rheological constitutive models. We, thus, arrive at a constitutive equation whose parameters are deducible from the moments of inertia of the macromolecule, and thus, deducible from macromolecular architecture alone. Our model is accurate up to third order for time-independent flows and is accurate to second order for time-dependent ones.

1.
O.
Hassager
, “
Kinetic theory and rheology of bead‐rod models for macromolecular solutions. I. Equilibrium and steady flow properties
,”
J. Chem. Phys.
60
(
5
),
2111
2124
(
1974
).
2.
O.
Hassager
, “
Kinetic theory and rheology of bead‐rod models for macromolecular solutions. II. Linear unsteady flow properties
,”
J. Chem. Phys.
60
(
5
),
4001
4008
(
1974
). Erratum: In Eq. (2), “ 1 / 2” should be “ 1 / 2”.
3.
R.
Chakraborty
,
D.
Singhal
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
Macromolecular complex viscosity from space-filling equilibrium structure
,”
Phys. Fluids
34
(
9
),
093109
(
2022
).
4.
M. C.
Pak
,
A. J.
Giacomin
,
M. A.
Kanso
, and
H. C.
Pak
, “
Large-amplitude oscillatory shear flow from general rigid bead-rod theory
,”
Phys. Fluids
35
,
083120
(
2023
). Feature article.
5.
A. J.
Giacomin
,
S. J.
Coombs
,
M. C.
Pak
, and
K.-I.
Kim
, “
General rigid bead-rod theory for steady-shear flow
,”
Phys. Fluids
35
,
083111
(
2023
).
6.
J. G.
Kirkwood
and
R. J.
Plock
, “
Non‐Newtonian viscoelastic properties of rod‐like macromolecules in solution
,”
J. Chem. Phys.
24
(
4
),
665
669
(
1956
).
7.
E.
Paul
, “
Non‐Newtonian viscoelastic properties of rodlike molecules in solution: Comment on a paper by Kirkwood and Plock
,”
J. Chem. Phys.
51
(
3
),
1271
1272
(
1969
).
8.
E. W.
Paul
and
R. M.
Mazo
, “
Hydrodynamic properties of a plane-polygonal polymer according to Kirkwood–Riseman theory
,”
J. Chem. Phys.
51
,
1102
(
1969
).
9.
Y.
Mou
and
R. M.
Mazo
, “
Normal stress in a solution of a plane-polygonal polymer under oscillating shearing flow
,”
J. Chem. Phys.
67
,
5972
(
1977
).
10.
R. B.
Bird
,
H. R.
Warner
, Jr.
, and
D. C.
Evans
, “
Kinetic theory and rheology of dumbbell suspensions with Brownian motion
,”
Adv. Polym. Sci.
8
,
1
90
(
1971
).
11.
R. B.
Bird
and
H. R.
Warner
, Jr.
, “
Hydrodynamic interaction effects in rigid dumbbell suspensions. I. Kinetic theory
,”
Trans. Soc. Rheol.
15
(
4
),
741
750
(
1971
).
12.
W. E.
Stewart
and
J. P.
Sørensen
, “
Hydrodynamic interaction effects in rigid dumbbell suspensions. II. Computations for steady shear flow.
Trans. Soc. Rheol.
16
(
1
),
1
13
(
1972
).
13.
R. B.
Bird
,
O.
Hassager
,
R. C.
Armstrong
, and
C. F.
Curtiss
,
Dynamics of Polymeric Liquids
,
1st ed.
(
Wiley
,
New York
,
1977
), Vol.
2
.
14.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
,
2nd ed.
(
John Wiley & Sons, Inc
.,
New York
,
1987
), Vol.
2
.
15.
R. B.
Bird
,
A. J.
Giacomin
,
A. M.
Schmalzer
, and
C.
Aumnate
, “
Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
,”
J. Chem. Phys.
140
(
7
),
074904
(
2014
). Errata: Ganged after Ref. 116 of 50.
16.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress
,”
Phys. Fluids
29
(
4
),
043101
(
2017
). Errata: In column 4 of rows 12 and 13 of Table IV, λ 2 = μ 0 = μ 1 should be μ 1 = λ 1 ; λ 2 = μ 0 and μ 1 = λ 1 ; λ 2 = μ 0.
17.
A. M.
Schmalzer
,
R. B.
Bird
, and
A. J.
Giacomin
, “
Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions
,”
J. Non-Newtonian Fluid Mech.
222
,
56
71
(
2015
). Errata: In Eq. (6), “38725” should be “38728”; Above Eqs. (14) and (25), “significant figures” should be “16 significant figures.”
18.
P. H.
Gilbert
and
A. J.
Giacomin
, “
Molecular origins of higher harmonics in large-amplitude oscillatory shear flow: Shear stress response
,”
Phys. Fluids
28
(
10
),
103101
(
2016
). Erratum: In Eq. (D1), should be γ ̇ 0.
19.
L. M.
Jbara
,
A. J.
Giacomin
, and
P. H.
Gilbert
, “
Macromolecular origins of fifth shear stress harmonic in large-amplitude oscillatory shear flow
,”
J. Soc. Rheol., Jpn.)
44
(
5
),
289
302
(
2016
). Errata: Ganged in Ref. 126 of 16 above; In the last row of Table II, “storage viscosity” should be “loss and storage viscosities.”
20.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Macromolecular architecture and complex viscosity
,”
Phys. Fluids
31
(
8
),
087107
(
2019
). Editor's pick. Errata: Ganged in Ref. 8 of Ref. 65 above. In the caption to Fig. 1, “(rightmost)” should be “(leftmost),” and “(leftmost)” should be “(rightmost).”
21.
M. A.
Kanso
,
A. J.
Giacomin
, and
C.
Saengow
, “
Large-amplitude oscillatory shear flow loops for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
5
),
053102
(
2020
).
22.
M. A.
Kanso
, “
Coronavirus hydrodynamics
,” Ph.D. thesis (
Polymers Research Group, Chemical Engineering Department, Queen's University
,
Kingston, ON, Canada
,
2022
).
23.
M. A.
Kanso
and
A. J.
Giacomin
, “
General rigid bead-rod macromolecular theory
,” in
Recent Advances in Rheology: Theory, Biorheology, Suspension and Interfacial Rheology
,
1st ed
., edited by
D. D.
Kee
and
A.
Ramachandran
(
AIP Publishing
,
Melville, NY
,
2022
), Chap. 2, pp.
2-1
2-32
. Errata: Below Eq. (2.78), “…increases with N” should be “…increases with N 3.” Above Eq. (2.80), “(77)” should be “(2.77).”
24.
M.
Chol Pak
,
A. J.
Giacomin
,
M. A.
Kanso
, and
H. C.
Pak
, “
Large-amplitude oscillatory shear flow from general rigid bead-rod theory
,”
PRG Report No. 096, QU-CHEE-PRGTR-2023-96
(
Polymers Research Group, Chemical Engineering Dept., Queen's University
,
Kingston, Canada
,
2023
).
25.
M. C.
Pak
,
A. J.
Giacomin
, and
M. A.
Kanso
, “
Steady elongational flow from rotarance theory
,”
PRG Report No. 098, QU-CHEE-PRGTR-2023-98
(
Polymers Research Group, Chemical Engineering Dept., Queen's University
,
Kingston, ON, Canada
,
2023
).
26.
C.
Saengow
and
A. J.
Giacomin
, “
Ongoing relevance of Oldroyd 8-constant fluids
,”
J. Non-Newtonian Fluid Mech.
299
,
104653
(
2022
).
27.
A. J.
Giacomin
and
C.
Saengow
, “
Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow
,”
Mod. Phys. Lett. B
32
(
12/13
),
1840036
(
2018
). Erratum: In Eq. (8), η ¯ 1 ( ε ̇ , 0 ) η 0
should be
η ¯ 1 ( ε ̇ , 0 ) 3 η 0.
28.
J. L.
Lumley
, “
Applicability of the Oldroyd constitutive equation to flow of dilute polymer solutions
,”
Phys. Fluids
14
(
11
),
2282
2284
(
1971
).
29.
J. L.
Lumley
, “
Erratum: Applicability of the Oldroyd constitutive equation to flow of dilute polymer solutions
,”
Phys. Fluids
15
(
11
),
2081
2081
(
1972
).
30.
R. B.
Bird
and
W. J.
Drugan
, “
An exploration and further study of an enhanced Oldroyd model
,”
Phys. Fluids
29
(
5
),
053103
(
2017
).
31.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
,
2nd ed.
(
Wiley
,
New York
,
1987
), Vol.
1
.
32.
O.
Hassager
, “
On the kinetic theory and rheology of multibead models for macromolecules
,” Ph.D. thesis (
Chemical Engineering Department, University of Wisconsin
,
Madison
,
1973
).
33.
C.
Saengow
, “
Polymer process partitioning: Extruding plastic pipe
,” Ph.D. thesis
(Polymers Research Group, Chemical Engineering Department, Queen's University
,
Kingston, ON, Canada
,
2016
).
34.
C.
Saengow
and
A. J.
Giacomin
, “
Fluid elasticity in plastic pipe extrusion: Loads on die barrel
,”
Int. Polym. Process.
32
(
5
),
648
658
(
2017
).
35.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Knuckle formation from melt elasticity in plastic pipe extrusion
,”
J. Non-Newtonian Fluid Mech.
242
,
11
22
(
2017
).
36.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Extruding plastic pipe from eccentric dies
,”
J. Non-Newtonian Fluid Mech.
223
,
176
199
(
2015
).
37.
H. M.
Baek
and
A. J.
Giacomin
, “
Corotating or codeforming models for thermoforming
,”
J. Adv. Eng.
8
(
2
),
41
54
(
2013
).
38.
L. M.
Johnson
,
A. J.
Giacomin
, and
A. W.
Mix
, “
Viscoelasticity in thermoforming
,”
J. Polym. Eng.
32
(
4–5
),
245
258
(
2012
).
39.
K. L.
Lieg
and
A. J.
Giacomin
, “
Thermoforming triangular troughs
,”
Polym. Eng. Sci.
49
(
1
),
189
199
(
2009
).
40.
M. A.
Kershner
and
A. J.
Giacomin
, “
Thermoforming cones
,”
J. Plast. Technol.
3
(
3
),
1
25
(
2007
).
41.
M. A.
Kershner
, “
Thermoforming plastic cups and cones
,” Master's thesis
(University of Wisconsin, Mechanical Engineering Department
,
Madison, WI
,
2007
).
42.
L. M.
Johnson
, “
Viscoelasticity in thermoforming
,” Master's thesis
(University of Wisconsin, Materials Science Program
,
Madison, WI
,
2011
).
43.
H. M.
Baek
, “Corotating or codeforming rheological models for thermoforming
,” Master's thesis
(University of Wisconsin, Mechanical Engineering Department
,
Madison, WI
,
2013
).
44.
J. R.
Jones
, “
Flow of elastico-viscous liquids in pipes with cores (Part I)
,”
J. Méc.
3
(
1
),
79
99
(
1964
).
45.
J. R.
Jones
and
R. S.
Jones
, “
Flow of elastico-viscous liquids in pipes with cores (Part III)
,”
J. Méc.
5
(
3
),
375
395
(
1966
).
46.
R. S.
Jones
, “
Flow of an elastico-viscous liquid in a corrugated pipe
,”
J. Méc.
6
(
3
),
443
448
(
1967
).
47.
J. R.
Jones
, “
Flow of elastico-viscous liquids in pipes with cores (Part II)
,”
J. Méc.
4
(
1
),
121
132
(
1965
).
48.
C. J.
Camilleri
and
J. R.
Jones
, “
The effect of a pressure gradient on the secondary flow of non-Newtonian liquids between non-intersecting cylinders
,”
J. Appl. Math. Phys.
17
(
1
),
78
90
(
1966
).
49.
C.
Saengow
and
A. J.
Giacomin
, “
Stress growth shearfree flow from the Oldroyd 8-constant framework
,”
Phys. Fluids
32
(
8
),
083112
(
2020
).
50.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
,
1st ed.
(
Wiley
,
New York
,
1977
), Vol.
1
.
51.
M. A.
Kanso
,
V.
Chaurasia
,
E.
Fried
, and
A. J.
Giacomin
, “
Peplomer bulb shape and coronavirus rotational diffusivity
,”
Phys. Fluids
33
(
3
),
033115
(
2021
). Editor's pick.
52.
R. B.
Bird
, “
A modification of the Oldroyd model for rigid dumbbell suspensions with Brownian motion
,”
J. Appl. Math. Phys.
23
,
157
159
(
1972
).
53.
P. H.
Gilbert
, “
Molecular orientation in large-amplitude oscillatory shear (LAOS) of complex fluids
,” Ph.D. thesis (
Polymers Research Group, Chemical Engineering Department, Queen's University
,
Kingston, ON, Canada
,
2019
).
54.
P. H.
Gilbert
and
A. J.
Giacomin
, “
Small-angle light scattering in large-amplitude oscillatory shear
,”
Phys. Fluids
31
(
10
),
103104
(
2019
).
55.
J. H.
Piette
,
C.
Saengow
, and
A. J.
Giacomin
, “
Hydrodynamic interaction for rigid dumbbell suspensions in steady shear flow
,”
Phys. Fluids
31
(
5
),
053103
(
2019
).
56.
M. C.
Pak
,
K.-I.
Kim
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
General rigid bead-rod theory with hydrodynamic interaction for polymer viscoelasticity
,”
Phys. Fluids
34
(
2
),
023106
(
2022
). Feature article.
57.
M. A.
Kanso
,
M. C.
Pak
,
K.-I.
Kim
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Hydrodynamic interaction and complex viscosity of multi-bead rods
,”
Phys. Fluids
34
(
4
),
043102
(
2022
). Editor's pick.
58.
M. A.
Kanso
,
M. C.
Pak
,
R.
Chakraborty
,
K.-I.
Kim
, and
A. J.
Giacomin
, “
Hydrodynamic interaction within canonical macromolecular structures
,”
Phys. Fluids
34
(
8
),
083109
(
2022
). Editor's pick.
59.
S. I.
Abdel-Khalik
,
R. B.
Bird
, “
Letter to the editor: Rheology of lopsided-dumbbell suspensions
,”
Appl. Sci. Res.
30
,
268
269
(
1975
).
60.
M. C.
Williams
, “
Steady flow of an Oldroyd viscoelastic fluid in tubes, slits and narrow annuli
,”
AIChE J.
8
,
378
382
(
1962
).
61.
C. J. S.
Petrie
, “
Memory effects in a non-uniform flow: A study of the behavior of a tubular film of viscoelastic fluid
,”
Rheol. Acta
12
,
92–99
(
1973
).
62.
C. J. S.
Petrie
,
Elongational Flows
(
Pitman
,
London
,
1979
).
63.
J. R. A.
Pearson
,
Mechanics of Polymer Processing
(
Elsevier
,
London
,
1985
).
64.
P.
Poungthong
, “
Investigation of nonlinear rheological behaviours in polymer processing
,” Ph.D. thesis (
Mechanical Engineering Department, King Mongkut's University of Technology North Bangkok
,
2023
).
You do not currently have access to this content.