Cemented high-concentration backfill (CHB) is an indispensable solution for mitigating risks associated with underground mining voids and surface tailings ponds. The accurate prediction of pressure drop of CHB in pipe flow is crucial for the design of backfilling systems. In this study, full factorial loop tests were conducted to obtain observed pressure drop data and rheological parameters of CHB, while considering the variables of binder content, solid fraction, and flow velocity. The rheometer method was also utilized to acquire the rheological parameters of CHB for comparison. Three analytical models and one numerical simulation method, which are considered highly accurate in the literature, were employed to predict the pressure drop of CHB in pipe flow. The findings indicate that the Buckingham model and the Darby–Melson model produce identical results as they are fundamentally equivalent. The Swamee–Aggarwal model and the single-phase flow simulation employ a similar mechanism as the Buckingham model, albeit with minor variations in mathematical treatment. The rheological parameters of CHB obtained through the rheometer method are considerably greater than those acquired by the loop test method, leading to significantly higher predicted pressure drop values from both the three analytical models and single-phase flow simulation when compared to the measured values. Whereas the mean deviation of the three analytical models is within 6.5% when employing rheological parameters of CHB determined by the loop test, with the Swamee–Aggarwal model being the most accurate, the mean error of single-phase flow simulation remains within 10%. It is suggested that the rheological parameters of CHB be determined through small-diameter loop testing. The Buckingham model and single-phase flow simulation are subsequently recommended for predicting pressure drop in industrial straight horizontal pipelines and complex piping systems, respectively. The results of this study facilitate the selection of the simplest method for accurately predicting the pressure drop of CHB in pipe flow.

1.
C.
Qi
and
A.
Fourie
, “
Cemented paste backfill for mineral tailings management: Review and future perspectives
,”
Miner. Eng.
144
,
106025
(
2019
).
2.
X.
Deng
,
B.
Klein
,
L.
Tong
, and
B.
de Wit
, “
Experimental study on the rheological behavior of ultra-fine cemented backfill
,”
Constr. Build. Mater.
158
,
985
994
(
2018
).
3.
N.
Sivakugan
,
R.
Veenstra
, and
N.
Naguleswaran
, “
Underground mine backfilling in Australia using paste fills and hydraulic fills
,”
Int. J. Geosynth. Ground Eng.
1
(
2
),
1
7
(
2015
).
4.
Y.
Liu
,
H.
Li
,
K.
Wang
,
H.
Wu
, and
B.
Cui
, “
Effects of accelerator–water reducer admixture on performance of cemented paste backfill
,”
Constr. Build. Mater.
242
,
118187
(
2020
).
5.
B.
Koohestani
,
P.
Mokhtari
,
E.
Yilmaz
,
F.
Mahdipour
, and
A. K.
Darban
, “
Geopolymerization mechanism of binder-free mine tailings by sodium silicate
,”
Constr. Build. Mater.
268
,
121217
(
2021
).
6.
J.
Li
,
E.
Yilmaz
, and
S.
Cao
, “
Influence of industrial solid waste as filling material on mechanical and microstructural characteristics of cementitious backfills
,”
Constr. Build. Mater.
299
,
124288
(
2021
).
7.
Z.
Huang
,
E.
Yilmaz
, and
S.
Cao
, “
Analysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsum
,”
Minerals
11
(
4
),
409
(
2021
).
8.
H.
Jiang
,
M.
Fall
,
E.
Yilmaz
,
Y.
Li
, and
L.
Yang
, “
Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy
,”
Powder Technol.
372
,
258
266
(
2020
).
9.
A.
Wu
,
Z.
Ruan
, and
J.
Wang
, “
Rheological behavior of paste in metal mines
,”
Int. J. Miner. Metall. Mater.
29
(
4
),
717
726
(
2022
).
10.
S.
Yin
,
Y.
Shao
,
A.
Wu
,
H.
Wang
,
X.
Liu
, and
Y.
Wang
, “
A systematic review of paste technology in metal mines for cleaner production in China
,”
J. Cleaner Prod.
247
,
119590
(
2020
).
11.
E.
Yilmaz
,
T.
Belem
, and
M.
Benzaazoua
, “
Badania fizykochemiczne i mechaniczne właściwości skonsolidowanych i nieskonsolidowanych zawiesin nasyconych cementem
,”
Gospod. Surowcami Miner./Miner. Resources Manage.
29
(
1
),
81
100
(
2013
).
12.
S.
Cao
,
G.
Xue
,
E.
Yilmaz
, and
Z.
Yin
, “
Assessment of rheological and sedimentation characteristics of fresh cemented tailings backfill slurry
,”
Int. J. Min., Reclam. Environ.
35
(
5
),
319
335
(
2021
).
13.
Q.
Chen
,
H.
Zhou
,
Y.
Wang
,
D.
Wang
,
Q.
Zhang
, and
Y.
Liu
, “
Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle
,”
Int. J. Miner. Metall. Mater.
30
(
8
),
1608
1620
(
2023
).
14.
C.
Qi
,
Q.
Chen
,
A.
Fourie
,
J.
Zhao
, and
Q.
Zhang
, “
Pressure drop in pipe flow of cemented paste backfill: Experimental and modeling study
,”
Powder Technol.
333
,
9
18
(
2018
).
15.
B.
Bharathan
,
M.
McGuinness
,
S.
Kuhar
,
M.
Kermani
,
F. P.
Hassani
, and
A. P.
Sasmito
, “
Pressure loss and friction factor in non-Newtonian mine paste backfill: Modelling, loop test and mine field data
,”
Powder Technol.
344
,
443
453
(
2019
).
16.
H.
Dong
,
N.
Abdul Aziz
,
H.
Zulhaidi Mohd Shafri
, and
K.
Arifin Bin Ahmad
, “
Computational fluid dynamics study on cemented paste backfill slurry: Review
,”
Constr. Build. Mater.
369
,
130558
(
2023
).
17.
Q.
Chen
,
H.
Zhou
,
Y.
Wang
,
X.
Li
,
Q.
Zhang
,
Y.
Feng
, and
C.
Qi
, “
Resistance loss in cemented paste backfill pipelines: Effect of inlet velocity, particle mass concentration, and particle size
,”
Materials
15
,
3339
(
2022
).
18.
H.
Movahedi
and
S.
Jamshidi
, “
Experimental and CFD simulation of slurry flow in the annular flow path using two-fluid model
,”
J. Pet. Sci. Eng.
198
,
108224
(
2021
).
19.
H.
Movahedi
and
S.
Jamshidi
, “
New insight into hydrodynamic and cake erosion mechanism during rotating-disk dynamic microfiltration of concentrated bentonite suspensions at different salinity conditions
,”
Sep. Purif. Technol.
300
,
121844
(
2022
).
20.
Q.
Chen
,
Q.
Zhang
,
X.
Wang
,
C.
Xiao
, and
Q.
Hu
, “
A hydraulic gradient model of paste-like crude tailings backfill slurry transported by a pipeline system
,”
Environ. Earth Sci.
75
(
14
),
1
9
(
2016
).
21.
H.
Wang
,
X.
Wang
,
A.
Wu
, and
Q.
Peng
, “
A wall slip pressure gradient model of unclassified tailings paste in pipe flow: Theoretical and loop test study
,”
J. Non-Newtonian Fluid Mech.
298
,
104691
(
2021
).
22.
K. M.
Assefa
and
D. R.
Kaushal
, “
A comparative study of friction factor correlations for high concentrate slurry flow in smooth pipes
,”
J. Hydrol. Hydromech.
63
(
1
),
13
20
(
2015
).
23.
C.
Qi
,
Q.
Chen
,
X.
Dong
,
Q.
Zhang
, and
Z. M.
Yaseen
, “
Pressure drops of fresh cemented paste backfills through coupled test loop experiments and machine learning techniques
,”
Powder Technol.
361
,
748
758
(
2020
).
24.
C.
Qi
,
L.
Guo
,
H. B.
Ly
,
H.
Van Le
, and
B. T.
Pham
, “
Improving pressure drops estimation of fresh cemented paste backfill slurry using a hybrid machine learning method
,”
Miner. Eng.
163
,
106790
(
2021
).
25.
C.
Zhang
,
Y. Y.
Tan
,
K.
Zhang
,
C. Y.
Zhang
, and
W. D.
Song
, “
Rheological parameters and transport characteristics of fresh cement tailings backfill slurry in an underground iron mine
,”
Adv. Civil Eng.
2021
,
1
.
26.
Q.-l.
Zhang
,
Y.-t.
Li
,
Q.-s.
Chen
,
Y.-k.
Liu
,
Y.
Feng
, and
D.-l.
Wang
, “
Effects of temperatures and pH values on rheological properties of cemented paste backfill
,”
J. Cent. South Univ.
28
(
6
),
1707
1723
(
2021
).
27.
D. V.
Boger
, “
Rheology of slurries and environmental impacts in the mining industry
,”
Annu. Rev. Chem. Biomol. Eng.
4
,
239
257
(
2013
).
28.
D.
Wu
,
B.
Yang
, and
Y.
Liu
, “
Pressure drop in loop pipe flow of fresh cemented coal gangue-fly ash slurry: Experiment and simulation
,”
Adv. Powder Technol.
26
,
920
(
2015
).
29.
S.
Mizani
and
P.
Simms
, “
Method-dependent variation of yield stress in a thickened gold tailings explained using a structure based viscosity model
,”
Miner. Eng.
98
,
40
48
(
2016
).
30.
M.
Bala
,
R.
Zentar
, and
P.
Boustingorry
, “
Comparative study of the yield stress determination of cement pastes by different methods
,”
Mater. Struct.
52
,
102
(
2019
).
31.
E.
Bauer
,
J. G. G.
de Sousa
,
E. A.
Guimarães
, and
F. G. S.
Silva
, “
Study of the laboratory Vane test on mortars
,”
Build. Environ.
42
(
1
),
86
92
(
2007
).
32.
S.
Panchal
,
D.
Deb
, and
T.
Sreenivas
, “
Variability in rheology of cemented paste backfill with hydration age, binder and superplasticizer dosages
,”
Adv. Powder Technol.
29
(
9
),
2211
2220
(
2018
).
33.
D. V.
Boger
, “
Rheology and the resource industries
,”
Chem. Eng. Sci.
64
(
22
),
4525
4536
(
2009
).
34.
L.
Pullum
,
D. V.
Boger
, and
F.
Sofra
, “
Hydraulic mineral waste transport and storage
,”
Annu. Rev. Fluid Mech.
50
(
1
),
157
185
(
2018
).
35.
P. R.
de Matos
,
R.
Pilar
,
C. A.
Casagrande
,
P. J. P.
Gleize
, and
F.
Pelisser
, “
Comparison between methods for determining the yield stress of cement pastes
,”
J. Braz. Soc. Mech. Sci. Eng.
42
(
1
),
1
13
(
2020
).
36.
K. J.
Creber
,
M.
McGuinness
,
M. F.
Kermani
, and
F. P.
Hassani
, “
Investigation into changes in pastefill properties during pipeline transport
,”
Int. J. Miner. Process.
163
,
35
44
(
2017
).
37.
P. K.
Swamee
and
N.
Aggarwal
, “
Explicit equations for laminar flow of Bingham plastic fluids
,”
J. Petroleum Sci. Eng.
76
(
3–4
),
178
184
(
2011
).
38.
X.
Yang
,
B.
Xiao
,
Q.
Gao
, and
J.
He
, “
Determining the pressure drop of cemented Gobi sand and tailings paste backfill in a pipe flow
,”
Constr. Build. Mater.
255
(
30
),
119371
(
2020
).
39.
A.
Rawat
,
S. N.
Singh
, and
V.
Seshadri
, “
Computational investigation on the flow of high concentration fly ash slurries through converging-diverging bends
,”
Int. J. Coal Prep. Util.
42
,
623
643
(
2022
).
40.
A.
Rawat
,
S. N.
Singh
, and
V.
Seshadri
, “
Computational methodology for determination of head loss in both laminar and turbulent regimes for the flow of high concentration coal ash slurries through pipeline
,”
Part. Sci. Technol.
34
(
3
),
289
300
(
2016
).
41.
R.
Jewell
and
A. B.
Fourie
,
Paste and Thickened Tailings: A Guide
(
Australian Centre for Geomechanics
,
2006
).
42.
T.
Belem
and
M.
Benzaazoua
, “
Design and application of underground mine paste backfill technology
,”
Geotech. Geol. Eng.
26
(
2
),
147
174
(
2008
).
43.
A.
Wu
,
C.
Ai
,
Y.
Wang
,
X.
Yang
, and
F.
Zhou
, “
Test and mechanism analysis on improving rheological property of paste with pumping agent
,”
Central South Univ. (Sci. Technol.)
47
(
8
),
2752
2758
(
2016
).
44.
F. S. Rheological and C. Services
, “
Rheological assessment—A road map for plant designers and operators
,” in
Paste 2006: Proceedings of the Ninth International Seminar on Paste and Thickened Tailings
(
Australian Centre for Geomechanics
,
2006
), pp.
13
23
.
45.
G. A. S. Resources and K. T. S. Resources
, “
Paste backfill reticulation optimisation using high shear mixing at DeGrussa mine
,” in
Paste 2019: Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings
(
Australian Centre for Geomechanics
,
2019
), pp.
411
424
.
46.
C. F.
Ihle
,
A.
Tamburrino
, and
P.
Vivero
, “
Effect of sample manipulation on the Couette rheometry of copper concentrates
,”
Powder Technol.
239
,
78
85
(
2013
).
47.
R. K.
Dikonda
,
M.
Mbonimpa
, and
T.
Belem
, “
Specific mixing energy of cemented paste backfill, Part II: Influence on the rheological and mechanical properties and practical applications
,”
Minerals
11
(
11
),
1159
(
2021
).
48.
L.
Yang
,
J.
Li
,
H.
Liu
,
H.
Jiao
,
S.
Yin
,
X.
Chen
,
Y.
Yu
,
L.
Yang
,
J.
Li
,
H.
Liu
,
H.
Jiao
,
S.
Yin
, and
X.
Chen
, “
Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines in China Systematic review of mixing technology for recycling waste tailings as cemen-ted paste backfill in mines in China
,”
Int. J. Miner., Metall. Mater.
26
(
10
),
1206
1216
(
2023
).
You do not currently have access to this content.