The modulational instability (MI) of dissipative ion-acoustic waves (DIAWs) in an electronegative plasma (ENP) consisting of non-Maxwellian electrons exhibiting the Tsallis distribution is investigated. By applying a reductive perturbation technique, we derive a modified nonlinear Schödinger equation for investigating the MI of the DIAWs. The criteria for the MI are derived and discussed briefly. It is observed that the plasma parameters significantly affect the growth rate and the bandwidth of the MI. Within the unstable region, it is shown that the MI of the wavepacket and the specific properties of various localized and periodic structures (Kuznetsov–Ma breather, Akhmediev breather, and Peregrine soliton) have significantly modified by including the collisional parameter. The ratio of electrons to positive ions and the index q of the nonextensive distribution for electrons are significantly modified the characteristics of the DIAWs. The relevance of this work can help some researchers in space and laboratory plasma, to explain the formation and development of dissipative breathers in ENPs.

1.
M. A.
Lieberman
and
A.
Lichtenberg
,
Principle of Plasma Discharges and Materials Processing
,
2nd ed
. (
Willey
,
New York
,
2005
).
2.
N.
Sato
, “
Production of negative ion plasmas in a Q machine
,”
Plasma Sources Sci. Technol.
3
,
395
(
1994
).
3.
Y.
Nakamura
and
I.
Tsukabayashi
, “
Observation of modified Korteweg-de Vries solitons in a multicomponent plasma with negative ions
,”
Phys. Rev. Lett.
52
,
2356
(
1984
).
4.
R. A.
Gottscho
and
C. E.
Gaebe
, “
Negative ion kinetics in RF glow discharges
,”
IEEE Trans. Plasma Sci.
14
,
92
(
1986
).
5.
R.
Ichiki
,
S.
Yoshimura
,
T.
Watanabe
,
Y.
Nakamura
, and
Y.
Kawai
, “
Experimental observation of dominant propagation of the ion-acoustic slow mode in a negative ion plasma and its application
,”
Phys. Plasmas
9
,
4481
(
2002
).
6.
A. Y.
Wong
,
D. L.
Mamas
, and
D.
Arnush
, “
Negative ion plasmas
,”
Phys. Fluids
18
,
1489
(
1975
).
7.
W.
Oohara
and
R.
Hatakeyama
, “
Pair-ion plasma generation using fullerenes
,”
Phys. Rev. Lett.
91
,
205005
(
2003
).
8.
S. K.
El-Labany
,
W. M.
Moslem
,
K. A.
Shnishin
, and
S. A.
El-Tantawy
, “
Plasma with two-negative ions and immobile dust particles: Planar and non-planar ion-acoustic wave propagation
,”
Eur. Phys. J. D
61
,
409
(
2011
).
9.
H.
Massey
,
Negative Ions
,
3rd ed
. (
Cambridge University Press
,
Cambridge
,
1976
), p.
663
.
10.
Z. X.
Wang
,
X. L.
Wang
,
W.
Ren
,
J. Y.
Liu
, and
Y.
Liu
, “
Effect of negative ions on dust-acoustic soliton in a dusty plasma
,”
Phys. Lett. A
339
,
96
(
2005
).
11.
S. A.
El-Tantawy
, “
Rogue waves in electronegative space plasmas: The link between the family of the KdV equations and the nonlinear Schrödinger equation
,”
Astrophys. Space Sci.
361
,
164
(
2016
).
12.
S.
Ali Shan
and
S. A.
El-Tantawy
, “
The impact of positrons beam on the propagation of super freak waves in electron-positron-ion plasmas
,”
Phys. Plasmas
23
,
072112
(
2016
).
13.
B. B.
Mouhammadoul
,
A.
Alim
,
C. G. L.
Tiofack
,
A. M.
Albandari
,
W.
Alrowaily
,
S. M. E.
Ismaeel
, and
S. A.
El-Tantawy
, “
On the super positron-acoustic rogue waves in q-nonextensive magnetoplasmas
,”
Phys. Fluids
35
,
054109
(
2023
).
14.
S. A.
El-Tantawy
and
T.
Aboelenen
, “
Simulation study of planar and nonplanar super rogue waves in an electronegative plasma: Local discontinuous Galerkin method
,”
Phys. Plasmas
24
,
052118
(
2017
).
15.
S. A.
El-Tantawy
and
A.-M.
Wazwaz
, “
Anatomy of modified Korteweg-de Vries equation for studying the modulated envelope structures in non-Maxwellian dusty plasmas: Freak waves and dark soliton collisions
,”
Phys. Plasmas
25
,
092105
(
2018
).
16.
S. A.
El-Tantawy
,
R. A.
Alharbey
, and
A. H.
Salas
, “
Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: An application to electronegative plasma
,”
Chaos, Solitons Fractals
155
,
111776
(
2022
).
17.
S. A.
El-Tantawy
,
A. H.
Salas
,
H. A.
Alyousef
, and
M. R.
Alharthi
, “
Novel approximations to a nonplanar nonlinear Schrödinger equation and modeling nonplanar rogue waves/breathers in a complex plasma
,”
Chaos, Solitons Fractals
163
,
112612
(
2022
).
18.
N. H.
Aljahdaly
and
S. A.
El-Tantawy
, “Simulation study on nonlinear structures in nonlinear dispersive media
,”
Chaos
30
,
053117
(
2020
).
19.
A.-M.
Wazwaz
,
H. A.
Alyousef
,
S. M. E.
Ismaeel
, and
S. A.
El-Tantawy
, “
Bright and dark optical modulated soliton solutions for the fourth-order (2 + 1)-dimensional Schrödinger equation with higher-order odd and even terms
,”
Optik
277
,
170708
(
2023
).
20.
A.-M.
Wazwaz
,
W.
Alhejaili
,
A. O.
AL-Ghamdi
, and
S. A.
El-Tantawy
, “
Bright and dark modulated optical solitons for a (2+ 1)-dimensional optical Schrödinger system with third-order dispersion and nonlinearity
,”
Optik
274
,
170582
(
2023
).
21.
A.-M.
Wazwaz
,
W.
Albalawi
, and
S. A.
El-Tantawy
, “
Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers
,”
Optik
255
,
168673
(
2022
).
22.
Z. X.
Wang
,
Y.
Liu
,
L. W.
Ren
,
J. Y.
Liu
, and
X.
Wang
, “
Bohm criterion for electronegative dusty plasmas
,”
Thin Solid Films
506–507
,
637
(
2006
).
23.
N.
Plihon
and
P.
Chabert
, “
Ion acoustic waves and double-layers in electronegative expanding plasmas
,”
Phys. Plasmas
18
,
082102
(
2011
).
24.
S. K.
El-Labany
,
W. M.
Moslem
,
K. A.
Shnishin
,
S. A.
El-Tantawy
, and
P. K.
Shukla
, “
Fully nonlinear solitary waves in a dusty electronegative multispecies plasmas
,”
Phys. Plasmas
18
,
042306
(
2011
).
25.
Y.
Nakamura
,
J. L.
Ferreira
, and
G. O.
Ludwig
, “
Experiments on ion-acoustic rarefactive solitons in a multi-component plasma with negative ions
,”
J. Plasma Phys.
33
,
237
(
1985
).
26.
A. J.
Coates
,
F. J.
Crary
,
G. R.
Lewis
,
D. T.
Young
, and
J. H.
Waite
, Jr.
,“
Discovery of heavy negative ions in Titan's ionosphere
,”
Geophys. Res. Lett.
34
,
L22103
, https://doi.org/10.1029/2007GL030978 (
2007
).
27.
R.
Ichiki
,
M.
Shindo
,
S.
Yoshimura
,
T.
Watanabe
, and
Y.
Kawai
, “
Ion acoustic waves in one-and two-negative ion species plasmas
,”
Phys. Plasmas
8
,
4275
(
2001
).
28.
A.
Renyi
, “
On a new axiomatic theory of probability
,”
Acta Math. Acad. Sci. Hung.
6
,
285
(
1955
).
29.
C.
Tsallis
, “
Possible generalization of Boltzmann-Gibbs statistics
,”
J. Stat. Phys.
52
,
479
(
1988
).
30.
C.
Tsallis
,
Introduction to Nonextensive Statistical Mechanics
(
Springer
,
New York
,
2009
).
31.
S. A.
El-Tantawy
and
W. M.
Moslem
, “
Nonlinear structures of the Korteweg-de Vries and modified Korteweg-de Vries equations in non-Maxwellian electron-positron-ion plasma: Solitons collision and rogue waves
,”
Phys. Plasmas
21
,
052112
(
2014
).
32.
D. V.
Douanla
,
C. G. L.
Tiofack
,
Alim
,
M.
Aboubakar
,
A.
Mohamadou
,
W.
Albalawi
,
S. A.
El-Tantawy
, and
L. S.
El-Sherif
, “
Three-dimensional rogue waves and dust-acoustic dark soliton collisions in degenerate ultradense magnetoplasma in the presence of dust pressure anisotropy
,”
Phys. Fluids
34
,
087105
(
2022
).
33.
S. A.
El-Tantawy
,
N. A.
El-Bedwehy
, and
W. M.
Moslem
, “
Super rogue waves in ultracold neutral nonextensive plasmas
,”
J. Plasma Phys.
79
,
1049
(
2013
).
34.
S. A.
El-Tantawy
,
E. I.
El-Awady
, and
M.
Tribeche
, “
On the rogue waves propagation in non-Maxwellian complex space plasmas
,”
Phys. Plasmas
22
,
113705
(
2015
).
35.
M.
Tribeche
,
L.
Djebarni
, and
R.
Amour
, “
Ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution
,”
Phys. Plasmas
17
,
042114
(
2010
).
36.
D. H.
Peregrine
, “
Two-dimensional superfluid flows in inhomogeneous Bose-Einstein condensates
,”
J. Aust. Math. Soc., Ser. B
25
,
16
(
1983
).
37.
N.
Akhmediev
,
A.
Ankiewicz
, and
M.
Taki
, “
Waves that appear from nowhere and disappear without a trace
,”
Phys. Lett. A
373
,
675
(
2009
).
38.
M.
Bahar
,
B. B.
Mouhammadoul
,
C. G. L.
Tiofack
,
Alim
, and
A.
Mohamadou
, “
Pyragas method and chaos in higher-order nonlinear Schrödinger equation in an optical fiber
,”
Eur. Phys. J. D
76
,
104
(
2022
).
39.
B. B.
Mouhammadoul
,
C. G. L.
Tiofack
,
Alim
, and
A.
Mohamadou
, “
Positron-acoustic traveling waves solutions and quasi-periodic route to chaos in magnetoplasmas featuring Cairns nonthermal distribution
,”
Eur. Phys. J. D
75
,
61
(
2021
).
40.
C. S.
Panguetna
,
C. B.
Tabi
, and
T. C.
Kofané
, “
Low relativistic effects on the modulational instability of rogue waves in electronegative plasmas
,”
J. Theor. Appl. Phys.
13
,
237
(
2019
).
41.
A. S.
Bains
,
B.
Li
, and
M.
Tribeche
, “
Envelope excitations in electronegative plasmas with electrons featuring the Tsallis distribution
,”
Phys. Plasmas
20
,
092119
(
2013
).
42.
S. A.
El-Tantawy
,
A. M.
Wazwaz
, and
S.
Ali Shan
, “
On the nonlinear dynamics of breathers waves in electronegative plasmas with Maxwellian negative ions
,”
Phys. Plasmas
24
,
022105
(
2017
).
43.
C. G. L.
Tiofack
,
D. V.
Douanla
,
Alim
,
A.
Mohamadou
,
S. M. E.
Ismaeel
, and
S. A.
El-Tantawy
, “
Dust-acoustic modulated structures in self-gravitating magnetized electron depleted dusty plasmas: Multi-rogue waves and dark soliton collisions
,”
Eur. Phys. J. Plus
136
,
699
(
2021
).
44.
S. A.
El-Tantawy
,
A. H.
Salas
, and
M. R.
Alharthi
, “
On the analytical and numerical solutions of the linear damped NLSE for modeling dissipative freak waves and breathers in nonlinear and dispersive mediums: An application to a pair-ion plasma
,”
Front. Phys.
9
,
580224
(
2021
).
45.
N. H.
Aljahdaly
,
S. A.
El-Tantawy
,
A.-M.
Wazwaz
, and
H. A.
Ashi
, “
Adomian decomposition method for modelling the dissipative higher-order rogue waves in a superthermal collisional plasma
,”
J. Taibah Univ. Sci.
15
,
971
(
2021
).
46.
A. H.
Salas
,
S. A.
El-Tantawy
, and
J. E.
Castillo H
, “
The hybrid finite difference and moving boundary methods for solving a linear damped nonlinear Schrödinger equation to model rogue waves and breathers in plasma physics
,”
Math. Probl. Eng.
2020
,
6874870
.
47.
M.
Irfan
,
S.
Ali
,
S. A.
El-Tantawy
, and
S. M. E.
Ismaeel
, “
Three dimensional ion-acoustic rogons in quantized anisotropic magnetoplasmas with trapped/untrapped electrons
,”
Chaos
29
,
103133
(
2019
).
48.
S. A.
Almutlak
,
S. A.
El-Tantawy
,
S.
Ali Shan
, and
S. M. E.
Ismaeel
, “
Multidimensional freak waves in electron depleted dusty magnetoplasmas having superthermal ion with two temperatures
,”
Eur. Phys. J. Plus
134
,
513
(
2019
).
49.
S. A.
Almutalk
,
S. A.
El-Tantawy
,
E. I.
El-Awady
, and
S. K.
El-Labany
, “
On the numerical solution of nonplanar dust-acoustic super rogue waves in a strongly coupled dusty plasma
,”
Phys. Lett. A
383
,
1937
(
2019
).
50.
S. A.
El-Tantawy
,
T.
Aboelenen
, and
S. M. E.
Ismaeel
, “
Local discontinuous Galerkin method for modeling the nonplanar structures (solitons and shocks) in an electronegative plasma
,”
Phys. Plasmas
26
,
022115
(
2019
).
51.
N.
Akhtar
,
S. A.
El-Tantawy
,
S.
Mahmood
, and
A.-M.
Wazwaz
, “
On the dynamics of dust-acoustic and dust-cyclotron freak waves in a magnetized dusty plasma
,”
Romanian Rep. Phys.
71
,
403
(
2019
).
52.
S. A.
El-Tantawy
,
S.
Ali Shan
,
N.
Akhtar
, and
A. T.
Elgendy
, “
Impact of electron trapping in degenerate quantum plasma on the ion-acoustic breathers and super freak waves
,”
Chaos, Solitons Fractals
113
,
356
(
2018
).
53.
S. V.
Vladimirov
,
K. N.
Ostrikov
, and
M. Y.
Yu
, “
Ion-acoustic waves in a dust-contaminated plasma
,”
Phys. Rev. E
60
,
3257
(
1999
).
54.
R. P. H.
Chang
and
M.
Porkolab
, “
Experimental observation of nonlinear Landau damping of plasma waves in a magnetic field
,”
Phys. Rev. Lett.
25
,
1262
(
1970
).
55.
J. K.
Xue
, “
Cylindrical and spherical ion-acoustic solitary waves with dissipative effect
,”
Phys. Lett. A
322
,
225
(
2004
).
56.
S.
Guo
,
L.
Mei
,
Y. L.
He
,
C.
Ma
, and
Y.
Sun
, “
Modulation instability and dissipative ion-acoustic structures in collisional nonthermal electron-positron-ion plasma: Solitary and shock waves
,”
Plasma Sources Sci. Technol.
25
,
055006
(
2016
).
57.
S. A.
El-Tantawy
, “
Ion-acoustic waves in ultracold neutral plasmas: Modulational instability and dissipative rogue waves
,”
Phys. Lett. A
381
(
8
),
787
(
2017
).
58.
E.
Kengne
and
W. M.
Liu
, “
Dissipative ion-acoustic solitons in ion-beam plasma obeying a κ-distribution
,”
AIP Adv.
10
,
045218
(
2020
).
59.
S.
Sultana
and
I.
Kourakis
, “
Electron-scale dissipative electrostatic solitons in multi-species plasmas
,”
Phys. Plasmas
22
,
102302
(
2015
).
60.
S.
Sultana
,
R.
Schlickeiser
,
I. S.
Elkamash
, and
I.
Kourakis
, “
Dissipative high-frequency envelope soliton modes in nonthermal plasmas
,”
Phys. Rev. E
98
,
033207
(
2018
).
61.
D.
Jiulin
,“
Nonextensivity and the power-law distributions for the systems with self-gravitating long-range interactions
,”
Astrophys. Space Sci.
312
,
47
(
2007
).
62.
A.
Lavagno
,
G.
Kaniadakis
,
M.
Rego-Monteiro
,
P.
Quarati
, and
C.
Tsallis
, “
Non-extensive thermostatistical approach of the peculiar velocity function of galaxy clusters
,”
Astrophys. Lett. Commun.
35
,
449
(
1998
).
63.
C.
Tsallis
,
F. C. S.
Bareto
, and
E. D.
Loh
, “
Generalization of the Planck radiation law and application to the cosmic microwave background radiation
,”
Phys. Rev. E
52
,
1447
(
1995
).
64.
F.
Ferro
,
A.
Lavagno
, and
P.
Quarati
, “
Non-extensive resonant reaction rates in astrophysical plasmas
,”
Eur. Phys. J. A
21
,
529
(
2004
).
65.
G.
Kaniadakis
,
A.
Lavagno
, and
P.
Quarati
, “
Generalized statistics and solar neutrinos
,”
Phys. Lett. B
369
,
308
(
1996
).
66.
T.
Tanuiti
and
N.
Yajima
, “
Perturbation method for a nonlinear wave modulation. I
,”
J. Math. Phys.
10
,
1369
(
1969
).
67.
S. J.
Chen
,
X.
, and
Y. H.
Yin
, “
Dynamic behaviors of the lump solutions and mixed solutions to a (2 + 1)-dimensional nonlinear model
,”
Commun. Theor. Phys.
75
,
055005
(
2023
).
68.
X.
and
S. J.
Chen
, “
Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: One-lump-multi-stripe and one-lump-multi-soliton types
,”
Nonlinear Dyn.
103
,
947
(
2021
).
69.
Y. H.
Yin
,
X.
, and
W. X.
Ma
, “
Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+ 1)-dimensional nonlinear evolution equation
,”
Nonlinear Dyn.
108
,
4181
(
2022
).
70.
Y.
Chen
,
X.
, and
X. L.
Wang
, “
Bäcklund transformation, Wronskian solutions and interaction solutions to the (3+ 1)-dimensional generalized breaking soliton equation
,”
Eur. Phys. J. Plus
138
,
492
(
2023
).
71.
Y. W.
Zhao
,
J. W.
Xia
, and
X.
, “
The variable separation solution, fractal and chaos in an extended coupled (2+ 1)-dimensional Burgers system
,”
Nonlinear Dyn.
108
,
4195
(
2022
).
72.
S. J.
Chen
,
Y. H.
Yin
, and
X.
, “
Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations
,”
Commun. Nonlinear Sci. Numer. Simul.
112
,
107205
(
2023
).
73.
M. Z.
Yin
,
Q. W.
Zhu
, and
X.
, “
Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model
,”
Nonlinear Dyn.
106
,
1347
(
2021
).
74.
X.
,
H. W.
Hui
,
F. F.
Liu
, and
Y. L.
Bai
, “
Stability and optimal control strategies for a novel epidemic model of COVID-19
,”
Nonlinear Dyn.
106
,
1491
(
2021
).
75.
B.
Liu
,
X. E.
Zhang
,
B.
Wang
, and
X.
, “
Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential
,”
Mod. Phys. Lett. B
36
,
22550057
(
2022
).
76.
S.
Guo
and
L.
Mei
, “
Modulation instability and dissipative rogue waves in ion-beam plasma: Roles of ionization, recombination, and electron attachment
,”
Phys. Plasmas
21
,
112303
(
2014
).
77.
G.
Yang
,
L.
Li
, and
S.
Jia
, “
Peregrine rogue waves induced by the interaction between a continuous wave and a soliton
,”
Phys. Rev. E
85
,
046608
(
2012
).
78.
E. A.
Kuznetsov
, “
Solitons in a parametrically unstable plasma
,”
Sov. Phys. Dokl.
22
,
507
(
1977
).
79.
Y. C.
Ma
, “
The perturbed plane-wave solutions of the cubic Schrödinger equation
,”
Stud. Appl. Math.
60
,
43
(
1979
).
80.
B. B.
Mouhammadoul
,
Alim
,
C. G. L.
Tiofack
, and
A.
Mohamadou
, “
Modulated positron-acoustic waves and rogue waves in a magnetized plasma system with nonthermal electrons and positrons
,”
Astrophys. Space Sci.
365
,
90
(
2020
).
You do not currently have access to this content.