Equally sized droplets made of the same liquid are known to either bounce, coalesce, or separate under collision. Comparable outcomes are observed for immiscible liquids with bouncing, encapsulation instead of coalescence, and separation with two or more daughter droplets. While the transitions between these regimes have been described, the liquid distribution arising from separation remains poorly studied, especially in the case of head-on collisions, for which it cannot be predicted. This distribution can be of three types: either two encapsulated droplets form (single reflex separation), or a single encapsulated droplet plus a droplet made solely of the encapsulating liquid emerge, the latter being found either on the impact side (reflexive separation) or opposite to it (crossing separation). In this paper, a large number of experimental and simulation data covering collisions with partial and total wetting conditions and Weber and Reynolds numbers in the ranges of 2–720 and 66–1100, respectively, is analyzed. The conditions leading to the three liquid distributions are identified and described based on the decomposition of the collision in two phases: (i) radial extension of the compound droplet into a lamella and (ii) its relaxation into an elongated cylindrical droplet. In accordance with these two phases, two dimensionless parameters, Λ = ρ i / ρ o W e i 1 / 2 and N = ν o / ν i σ o / σ i o, are derived, which are built on the collision parameters and liquid properties of the encapsulated inner droplet (i) and the outer droplet (o) only. The combination of these two parameters predicts the type of liquid distribution in very good agreement with both experimental and numerical results.

1.
C. W.
Visser
,
T.
Kamperman
,
L. P.
Karbaat
,
D.
Lohse
, and
M.
Karperien
, “
In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials
,”
Sci. Adv.
4
,
eaao1175
(
2018
).
2.
T.
Kamperman
,
V. D.
Trikalitis
,
M.
Karperien
,
C. W.
Visser
, and
J.
Leijten
, “
Ultrahigh-throughput production of monodisperse and multifunctional Janus microparticles using in-air microfluidics
,”
ACS Appl. Mater. Interfaces
10
,
23433
23438
(
2018
).
3.
F.
Marangon
,
D.
Baumgartner
, and
C.
Planchette
, “
In-air microfluidic strategy for the production of sodium alginate fibers with regular inclusions at very high throughput
,”
Phys. Rev. Appl.
19
,
054006
(
2023
).
4.
Y.
Yeo
,
A. U.
Chen
,
O. A.
Basaran
, and
K.
Park
, “
Solvent exchange method: A novel microencapsulation technique using dual microdispensers
,”
Pharm. research
21
,
1419
1427
(
2004
).
5.
C.
Planchette
,
E.
Lorenceau
, and
G.
Brenn
, “
Liquid encapsulation by binary collisions of immiscible liquid drops
,”
Colloids Surf., A
365
,
89
94
(
2010
).
6.
R.-H.
Chen
and
C.-T.
Chen
, “
Collision between immiscible drops with large surface tension difference: Diesel oil and water
,”
Exp. Fluids
41
,
453
461
(
2006
).
7.
N.
Ashgriz
and
J. Y.
Poo
, “
Coalescence and separation in binary collisions of liquid drops
,”
J. Fluid Mech.
221
,
183
(
1990
).
8.
Y. J.
Jiang
,
A.
Umemura
, and
C. K.
Law
, “
An experimental investigation on the collision behaviour of hydrocarbon droplets
,”
J. Fluid Mech.
234
,
171
190
(
1992
).
9.
J.
Qian
and
C. K.
Law
, “
Regimes of coalescence and separation in droplet collision
,”
J. Fluid Mech.
331
,
59
(
1997
).
10.
M.
Orme
, “
Experiments on droplet collisions, bounce, coalescence and disruption
,”
Prog. Energy Combust. Sci.
23
,
65
(
1997
).
11.
K.-L.
Pan
,
K.-L.
Huang
,
W.-T.
Hsieh
, and
C.-R.
Lu
, “
Rotational separation after temporary coalescence in binary droplet collisions
,”
Phys. Rev. Fluids
4
,
123602
(
2019
).
12.
C.
Gotaas
,
P.
Havelka
,
H. A.
Jakobsen
,
H. F.
Svendsen
,
M.
Hase
,
N.
Roth
, and
B.
Weigand
, “
Effect of viscosity on droplet-droplet collision outcome: Experimental study and numerical comparison
,”
Phys. Fluids
19
,
102106
(
2007
).
13.
K.
Willis
and
M.
Orme
, “
Experiments on the dynamics of droplet collisions in a vacuum
,”
Exp. Fluids
29
,
347
(
2000
).
14.
K.
Willis
and
M.
Orme
, “
Binary droplet collisions in a vacuum environment: An experimental investigation of the role of viscosity
,”
Exp. Fluids
34
,
28
(
2003
).
15.
Y.
Pan
and
K.
Suga
, “
Numerical simulation of binary liquid droplet collision
,”
Phys. Fluids
17
,
082105
(
2005
).
16.
M. R.
Nobari
,
Y.-J.
Jan
, and
G.
Tryggvason
, “
Head-on collision of drops—A numerical investigation
,”
Phys. Fluids
8
,
29
(
1996
).
17.
B.
Sakakibara
and
T.
Inamuro
, “
Lattice Boltzmann simulation of collision dynamics of two unequal-size droplets
,”
Int. J. Heat Mass Transfer
51
,
3207
(
2008
).
18.
X.
Chen
and
V.
Yang
, “
Direct numerical simulation of multiscale flow physics of binary droplet collision
,”
Phys. Fluids
32
,
062103
(
2020
).
19.
A.
Munnannur
and
R. D.
Reitz
, “
A new predictive model for fragmenting and non-fragmenting binary droplet collisions
,”
Int. J. Multiphase Flow
33
,
873
(
2007
).
20.
G.
Finotello
,
J. T.
Padding
,
N. G.
Deen
,
A.
Jongsma
,
F.
Innings
, and
J. A. M.
Kuipers
, “
Effect of viscosity on droplet-droplet collisional interaction
,”
Phys. Fluids
29
,
067102
(
2017
).
21.
C.
Planchette
,
H.
Hinterbichler
,
M.
Liu
,
D.
Bothe
, and
G.
Brenn
, “
Colliding drops as coalescing and fragmenting liquid springs
,”
J. Fluid Mech.
814
,
277
300
(
2017
).
22.
J.-T.
Zhang
,
H.-R.
Liu
, and
H.
Ding
, “
Head-on collision of two immiscible droplets of different components
,”
Phys. Fluids
32
,
082106
(
2020
).
23.
C.
Planchette
,
E.
Lorenceau
, and
G.
Brenn
, “
The onset of fragmentation in binary liquid drop collisions
,”
J. Fluid Mech.
702
,
5
25
(
2012
).
24.
I. V.
Roisman
,
C.
Planchette
,
E.
Lorenceau
, and
G.
Brenn
, “
Binary collisions of drops of immiscible liquids
,”
J. Fluid Mech.
690
,
512
535
(
2012
).
25.
Y.
Shi
,
G.
Tang
, and
Y.
Wang
, “
Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver
,”
J. Comput. Phys.
314
,
228
243
(
2016
).
26.
R. H. H.
Abadi
,
A.
Fakhari
, and
M. H.
Rahimian
, “
Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods
,”
Phys. Rev. E
97
,
033312
(
2018
).
27.
M.
Wöhrwag
,
C.
Semprebon
,
A.
Mazloomi Moqaddam
,
I.
Karlin
, and
H.
Kusumaatmaja
, “
Ternary free-energy entropic lattice Boltzmann model with a high density ratio
,”
Phys. Rev. Lett.
120
,
234501
(
2018
).
28.
G.
Li
,
Y.
Lian
,
Y.
Guo
,
M.
Jemison
,
M.
Sussman
,
T.
Helms
, and
M.
Arienti
, “
Incompressible multiphase flow and encapsulation simulations using the moment-of-fluid method
,”
Int. J. Numer. Methods Fluids
79
,
456
490
(
2015
).
29.
J.
Potyka
,
K.
Schulte
, and
C.
Planchette
, “
Simulation and experimental data on liquid distribution after the head-on separation of immiscible liquid droplet collisions
,” https://doi.org/10.18419/darus-3594 (
2023
).
30.
C.
Planchette
,
E.
Lorenceau
, and
G.
Brenn
, “
The onset of fragmentation in binary liquid drop collisions
,” in
12th Triennial International Conference on Liquid Atomization and Spray Systems (ICLASS 2012)
,
2012
.
31.
C.
Planchette
and
G.
Brenn
, “
Liquid encapsulation by binary collisions of immiscible liquid drops
,” in
11th Triennial International Annual Conference on Liquid Atomization and Spray Systems (ICLASS 2009)
,
2009
.
32.
W.
Rasband
, see https://imagej.nih.gov/ij/ for “
Imagej 2023
.”
33.
K.
Eisenschmidt
,
M.
Ertl
,
H.
Gomaa
,
C.
Kieffer-Roth
,
C.
Meister
,
P.
Rauschenberger
,
M.
Reitzle
,
K.
Schlottke
, and
B.
Weigand
, “
Direct numerical simulations for multiphase flows: An overview of the multiphase code FS3D
,”
Appl. Math. Comput.
272
,
508
517
(
2016
).
34.
C.
Hirt
and
B.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys
39
(
1
),
201
225
(
1981
).
35.
D. L.
Youngs
, “
Time-dependent multimaterial flow with large fluid distortion
,”
Numer. Methods Fluid Dyn.
245
,
273
(
1982
).
36.
W. J.
Rider
and
D. B.
Kothe
, “
Reconstructing volume tracking
,”
J. Comput. Phys.
141
,
112
152
(
1998
).
37.
J.
Potyka
and
K.
Schulte
, “
A volume of fluid method for three dimensional direct numerical simulations of immiscible droplet collisions
,” arXiv:2306.12096 (
2023
).
38.
J.
Kromer
,
J.
Potyka
,
K.
Schulte
, and
D.
Bothe
, “
Efficient sequential PLIC interface positioning for enhanced performance of the three-phase VoF Method
,”
Comput. Fluids
266
,
106051
(
2023
).
39.
B.
Lafaurie
,
C.
Nardone
,
R.
Scardovelli
,
S.
Zaleski
, and
G.
Zanetti
, “
Modelling merging and fragmentation in multiphase flows with SURFER
,”
J. Comput. Phys.
113
,
134
147
(
1994
).
40.
M.
Heinemann
,
see
https://github.com/UniStuttgart-VISUS/tpf for “
TPF Plugin for Three-Phase PLIC (2023)
.”
41.
h5py community, see https://www.h5py.org/ for “
h5py
” (
2023
).
42.
scikit-image development team, “
scikit-image
,” https://scikit-image.org/ (
2023
).
43.
scipy community, see https://scipy.org for “
scipy
” (
2023
).
44.
D.
Baumgartner
,
G.
Brenn
, and
C.
Planchette
, “
Effects of viscosity on liquid structures produced by in-air microfluidics
,”
Phys. Rev. Fluids
5
,
103602
(
2020
).

Supplementary Material

You do not currently have access to this content.