The two-dimensional nonlinear problem of a steady flow in a channel covered by broken ice with an arbitrary bottom topography including a semi-circular obstruction is considered. The mathematical model is based on the velocity potential theory accounting for nonlinear boundary conditions on the bottom of the channel and at the interface between the liquid and the layer of the broken ice, which are coupled through a numerical procedure. A mass loading model together with a viscous layer model is used to model the ice cover. The integral hodograph method is employed to derive the complex velocity potential of the flow, which contains the velocity magnitude at the interface in explicit form. The coupled problem is reduced to a system of integral equations in the unknown velocity magnitude at the interface, which is solved numerically using a collocation method. Case studies are conducted both for the subcritical and for the supercritical flow regimes in the channel. For subcritical flows, it is found that the ice cover allows for generating waves with amplitudes larger than those that may exist in the free surface case; the ice cover prevents the formation of a cusp and extends the solution to larger obstruction heights on the bottom. For supercritical flow regimes, the broken ice significantly affects the waveform of the soliton wave making it gentler. The viscosity factor of the model apparently governs the wave attenuation.

1.
G.
Boutin
,
T.
Williams
,
P.
Rampal
,
E.
Olason
, and
C.
Lique
, “
Wave-sea-ice interactions in a brittle rheological framework
,”
Cryosphere
15
,
431
457
(
2021
).
2.
P. J.
Langhorne
,
V. A.
Squire
,
C.
Fox
, and
T. G.
Haskell
, “
Breakup of sea ice by ocean waves
,”
Ann. Glaciol.
27
,
438
442
(
1998
).
3.
K.
He
,
B.-Y.
Ni
,
X.
Xu
,
H.
Wei
, and
Y.
Xue
, “
Numerical simulation on the breakup of an ice sheet induced by regular incident waves
,”
Appl. Ocean Res.
120
,
103024
(
2022
).
4.
The WAVEWATCH III® Development Group (WW3DG)
,
User Manual and System Documentation of WAVEWATCH III® Version 5.16
(
NOAA/NWS/NCEP/MMAB
,
College Park, MD
,
2016
).
5.
W.
Perrie
,
M. H.
Meylan
,
B.
Toulany
, and
M. P.
Casey
, “
Modelling wave-ice interactions in three dimensions in the marginal ice zone
,”
Philos. Trans. R. Soc., A
380
,
20210263
(
2022
).
6.
V. N.
Krasil'nikov
, “
On excitation of flexural-gravity waves
,”
Akust. Zh.
8
,
133
136
(
1962
).
7.
D. E.
Kheisin
, “
The nonstationary problem of the vibrations of an infinite elastic plate floating on the surface of an ideal liquid
,”
Izv. Akad. Nauk SSSR, Mekh. Mashinostr.
1
,
20
28
(
1962
) (in Russian).
8.
D. E.
Kheisin
, “
Moving load on an elastic plate which floats on the surface of an ideal fluid
,”
Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Mekh. Mashinostr.
1
,
178
180
(
1963
) (in Russian).
9.
D. E.
Kheisin
, “
On the problem of the elastic-plastic bending of an ice cover
,”
Tr. Arkt. Antarkt. Nauchno-Issled. Inst.
267
,
143
149
(
1964
) (in Russian).
10.
D. E.
Kheisin
, “
Some unsteady-state problems in ice-cover dynamics
,” in
Studies in Ice Physics and Ice Engineering
, edited by
G. N.
Yakovlev
(
Israel Program for Scientific Translations
,
Jerusalem
,
1973
), pp.
69
78
.
11.
D. E.
Kheisin
, “
Dynamics of floating ice cover
,” (
1967
) [Report No. FSTC-HT-23-485-69 (U.S. Army Foreign Science and Technology Center, Washington, DC, 1969) (in Russian)].
12.
V. A.
Squire
,
W. H.
Robinson
,
P. J.
Langhorne
, and
T. G.
Haskell
, “
Vehicles and aircraft on floating ice
,”
Nature
333
,
159
161
(
1988
).
13.
V. A.
Squire
,
J. P.
Dugan
,
P.
Wadhams
,
P. J.
Rottier
, and
A. K.
Liu
, “
Of ocean waves and sea ice
,”
Annu. Rev. Fluid Mech.
27
,
115
168
(
1995
).
14.
V. A.
Squire
, “
Of ocean waves and sea-ice revisited
,”
Cold Reg. Sci. Technol.
49
(
2
),
110
133
(
2007
).
15.
V. A.
Squire
, “
Ocean wave interactions with sea ice: A reappraisal
,”
Annu. Rev. Fluid Mech.
52
,
37
60
(
2020
).
16.
A. G.
Greenhill
, “
Wave motion in hydrodynamics
,”
Am. J. Math.
9
(
1
),
62
96
(
1886
).
17.
H.
Kagemoto
and
D. K. P.
Yue
, “
Interactions among multiple three-dimensional bodies in water waves: An exact algebraic method
,”
J. Fluid Mech.
166
,
189
209
(
1986
).
18.
A. S.
Peters
, “
The effect of a floating mat on water waves
,”
Commun. Pure Appl. Math.
3
,
319
354
(
1950
).
19.
M.
Weitz
and
J. B.
Keller
, “
Reflection of water waves from floating ice in water of finite depth
,”
Commun. Pure Appl. Math.
3
,
305
318
(
1950
).
20.
V. A.
Squire
and
A.
Allan
, “
Propagation of flexural gravity waves in sea ice
,” in
Sea Ice Processes and Models
, edited by
R.
Pritchard
(
University of Washington Press
,
Seattle
,
1980
), pp.
327
338
.
21.
A. K.
Liu
and
E.
Mollo-Christensen
, “
Wave propagation in a solid ice pack
,”
J. Phys. Oceanogr.
18
(
11
),
1702
1712
(
1988
).
22.
V. A.
Squire
and
C.
Fox
, “
On ice coupled waves: A comparison of data and theory
,” in
Advances in Ice Technology: Proceedings of the 3rd International Conference on Ice Technology
, edited by
T. K.
Murthy
,
W. M.
Sackinger
, and
P.
Wadhams
(Computational Mechanics Publications, Southampton, 1992), pp.
269
280
.
23.
N. J.
Robinson
and
S. C.
Palmer
, “
A modal analysis of a rectangular plate floating on an incompressible liquid
,”
J. Sound Vib.
142
(
3
),
453
460
(
1990
).
24.
J. E.
Weber
, “
Wave attenuation and wave drift in the marginal ice zone
,”
J. Phys. Oceanogr.
17
(
12
),
2351
2361
(
1987
).
25.
J. B.
Keller
, “
Gravity waves on ice-covered water
,”
J. Geophys. Res.
103
(
C4
),
7663
7669
, https://doi.org/10.1029/97JC02966 (
1998
).
26.
R.
Wang
and
H. H.
Shen
, “
Gravity waves propagating into an ice-covered ocean: A viscoelastic model
,”
J. Geophys. Res.
115
(
C6
),
C06024
, https://doi.org/10.1029/2009JC005591 (
2010
).
27.
B.-Y.
Ni
,
D.-F.
Han
,
S.-C.
Di
, and
Y.-Z.
Xue
, “
On the development of ice-water-structure interaction
,”
J. Hydrodyn.
32
(
4
),
629
652
(
2020
).
28.
D.
Porter
and
R.
Porter
, “
Approximations to wave scattering by an ice sheet of variable thickness over undulating bed topography
,”
J. Fluid Mech.
509
,
145
179
(
2004
).
29.
I. V.
Sturova
, “
Time-dependent response of a heterogeneous elastic plate floating on shallow water of variable depth
,”
J. Fluid Mech.
637
,
305
325
(
2009
).
30.
D.
Karmakar
,
J.
Bhattacharjee
, and
T.
Sahoo
, “
Oblique flexural gravity-wave scattering due to changes in bottom topography
,”
J. Eng. Math.
66
,
325
341
(
2010
).
31.
T. I.
Khabakhpasheva
and
A. A.
Korobkin
, “
Hydroelastic behaviour of compound floating plate in waves
,”
J. Eng. Math.
44
,
21
40
(
2002
).
32.
K.
Shishmarev
,
T. I.
Khabakhpasheva
, and
A. A.
Korobkin
, “
Ice response to an underwater body moving in a frozen channel
,”
Appl. Ocean Res.
91
,
101877
(
2019
).
33.
Y. Z.
Xue
,
L. D.
Zeng
,
B. Y.
Ni
,
A. A.
Korobkin
, and
T.
Khabakhpasheva
, “
Hydroelastic response of an ice sheet with a lead to a moving load
,”
Phys. Fluids
33
,
037109
(
2021
).
34.
T. I.
Khabakhpasheva
and
A. A.
Korobkin
, “
Oblique elastic plate impact on thin liquid layer
,”
Phys. Fluids
32
(
6
),
062101
(
2020
).
35.
Y. A.
Semenov
, “
Nonlinear flexural-gravity waves due to a body submerged in the uniform stream
,”
Phys. Fluids
33
,
052115
(
2021
).
36.
L. K.
Forbes
, “
Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution
,”
J. Fluid Mech.
169
,
409
428
(
1986
).
37.
L. K.
Forbes
, “
Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solution
,”
J. Fluid Mech.
188
,
491
508
(
1988
).
38.
E. I.
Părău
and
F.
Dias
, “
Nonlinear effects in the response of a floating ice plate to a moving load
,”
J. Fluid Mech.
460
,
281
305
(
2002
).
39.
J.-M.
Vanden-Broeck
and
E. I.
Părău
, “
Two-dimensional generalized solitary waves and periodic waves under an ice sheet
,”
Philos. Trans. R. Soc., A
369
,
2957
2972
(
2011
).
40.
P. A.
Milewski
,
J.-M.
Vanden-Broeck
, and
Z.
Wang
, “
Hydroelastic solitary waves in deep water
,”
J. Fluid Mech.
679
,
628
640
(
2011
).
41.
G. Y.
Yuan
,
B. Y.
Ni
,
Q. G.
Wu
,
Y. Z.
Xue
, and
D. F.
Han
, “
Ice breaking by a high-speed water jet impact
,”
J. Fluid Mech.
934
,
A1
(
2022
).
42.
A.-M.
Zhang
,
S.-M.
Li
,
P.
Cui
,
S.
Li
, and
Y.-L.
Liu
, “
A unified theory for bubble dynamics
,”
Phys. Fluids
35
,
033323
(
2023
).
43.
B.-S.
Yoon
and
Y. A.
Semenov
, “
Separated inviscid sheet flows
,”
J. Fluid Mech.
678
,
511
534
(
2011
).
44.
R. S.
Johnson
,
A Modern Introduction to the Mathematical Theory of Water Waves
(
Cambridge University Press
,
1997
).
45.
N. E.
Kochin
,
I. A.
Kibel
, and
N. V.
Roze
,
Theoretical Hydromechanics
(
Wiley Interscience
,
Moscow
,
1964
).
46.
H.
Helmholtz
, “
Über diskontinuierliche Flüssigkeitsbewegungen
,”
Monatsber. Akad. Wiss.
23
,
215
228
(
1868
).
47.
G.
Kirchhoff
, “
Zur Theorie freier Flüssigkeitsstrahlen
,”
Z. Angew. Math.
70
,
289
298
(
1869
).
48.
N. E.
Joukowskii
, “
Modification of Kirchhoff's method for determination of a fluid motion in two directions at a fixed velocity given on the unknown streamline
,”
Math. Sb.
15
(
1
),
121
278
(
1890
).
49.
J. H.
Michell
, “
On the theory of free streamlines
,”
Philos. Trans. R. Soc., A
181
,
389
431
(
1890
).
50.
S. A.
Chaplygin
,
About Pressure of a Flat Flow on Obstacles: On the Airplane Theory
(
Moscow University
,
1910
).
51.
L. K.
Forbes
and
L. W.
Schwartz
, “
Free-surface flow over a semicircular obstruction
,”
J. Fluid Mech.
114
,
299
314
(
1982
).
52.
M. I.
Gurevich
,
Theory of Jets in Ideal Fluids
(
Academic Press
,
1965
).
53.
L. M.
Milne-Thomson
,
Theoretical Hydrodynamics
,
5th ed.
(
Dover Publications
,
New York
,
1968
).
54.
Y. A.
Semenov
and
L. J.
Cummings
, “
Free boundary Darcy flows with surface tension: Analytical and numerical study
,”
Eur. J. Appl. Math.
17
,
607
631
(
2006
).
55.
Y. A.
Semenov
and
A.
Iafrati
, “
On the nonlinear water entry problem of asymmetric wedges
,”
J. Fluid Mech.
547
,
231
256
(
2006
).
56.
Y. A.
Semenov
and
B.-S.
Yoon
, “
Onset of flow separation at oblique water impact of a wedge
,”
Phys. Fluids
21
,
112103
112111
(
2009
).
57.
F.
Dias
and
E. O.
Tuck
, “
Weir flows and waterfalls
,”
J. Fluid Mech.
230
,
525
539
(
1991
).
You do not currently have access to this content.