In this article, the cooling of a solid surface by an evaporating film of a dielectric liquid and the influence of an electric field on this process are studied. The mesoscopic lattice Boltzmann method is applied to simulate the fluid flow with phase transitions and the heat transfer. The cases without electric field, with initially uniform electric displacement field, and with non-uniform electric field are considered. A uniform field enhances the cooling slightly. Non-uniform field leads to the rupture of the film. In this case, the local heat flux in local regions increases significantly when the film becomes thin and effectively evaporates. After the rupture of the film, the heat flux from a dry spot decreases abruptly. The formation of a dry spot can be prevented by switching off the electric field before the film rupture. Thus, we demonstrate the possibility of enhanced cooling of local regions at a surface using pulses of non-uniform electric field acting on a thin film of dielectric liquid placed at the surface. If the inflow of liquid to the film could be provided, it is in principle possible to realize a periodic process of application of voltage pulses to electrodes and to enhance the cooling of surface by the evaporation of a film of dielectric liquid.

1.
D. Y.
Kochkin
,
D. V.
Zaitsev
, and
O. A.
Kabov
, “
Thermocapillary rupture and contact line dynamics in the heated liquid layers
,”
Interfacial Phenom. Heat Transfer
8
,
1
9
(
2020
).
2.
A. S.
Mungalov
,
D. Y.
Kochkin
,
I. A.
Derevyannikov
, and
O. A.
Kabov
, “
Free surface deformations of the horizontal liquid film heated from the substrate side, experiment and numerical simulation
,”
Interfacial Phenom. Heat Transfer
11
,
95
107
(
2023
).
3.
G. I.
Taylor
, “
Disintegration of water drops in an electric field
,”
Proc. R. Soc. London, A
280
,
383
397
(
1964
).
4.
A. M.
Imano
and
A.
Beroual
, “
Deformation of water droplets on solid surface in electric field
,”
J. Colloid Interf. Sci.
298
,
869
879
(
2006
).
5.
V.
Vancauwenberghe
,
P.
Di Marco
, and
D.
Brutin
, “
Wetting and evaporation of a sessile drop under an external electric field: A review
,”
Colloids Surf., A
432
,
50
56
(
2013
).
6.
L. T.
Corson
,
C.
Tsakonas
,
B. R.
Duffy
,
N. J.
Mottram
,
I. C.
Sage
,
C. V.
Brown
, and
S.
Wilson
, “
Deformation of a nearly hemispherical conducting drop due to an electric field: Theory and experiment
,”
Phys. Fluids
26
,
122106
(
2014
).
7.
M.
Akbari
and
S.
Mortazavi
, “
Three-dimensional numerical simulation of deformation of a single drop under uniform electric field
,”
J. Appl. Fluid Mech.
10
,
693
702
(
2017
).
8.
A. L.
Kupershtokh
and
D. A.
Medvedev
, “
Dielectric droplet on a superhydrophobic substrate in an electric field
,” in
Proceedings of the 20th IEEE International Conference on Dielectric Liquids
(
IEEE
,
Roma, Italy
,
2019
), pp. 1–4.
9.
N. M.
Zubarev
, “
Self-similar solutions for conic cusps formation at the surface of dielectric liquids in electric field
,”
Phys. Rev. E
65
,
055301(R)
(
2002
).
10.
D. A.
Medvedev
and
A. L.
Kupershtokh
, “
Electric control of dielectric droplets and films
,”
Phys. Fluids
33
,
122103
(
2021
).
11.
L.
Tonks
, “
A theory of liquid surface rupture by a uniform electric field
,”
Phys. Rev.
48
,
562
568
(
1935
).
12.
G.
Lv
,
H.
Tian
,
J.
Shao
, and
D.
Yu
, “
Pattern formation in thin polymeric films via electrohydrodynamic patterning
,”
RSC Adv.
12
,
9681
9697
(
2022
).
13.
I.
Gabay
,
F.
Paratore
,
E.
Boyko
,
A.
Ramos
,
A. D.
Gat
, and
M.
Bercovici
, “
Shaping liquid films by dielectrophoresis
,”
Flow
1
,
E13
(
2021
).
14.
A. L.
Kupershtokh
and
D. A.
Medvedev
, “
Perforation of thin liquid films under the action of nonuniform electric field
,”
J. Appl. Mech. Tech. Phys.
63
,
923
930
(
2022
).
15.
A. L.
Kupershtokh
and
D. A.
Medvedev
, “
Liquid dielectric films in a nonuniform electric field: Dynamics, perforation, influence of electrode wettability
,”
Interfacial Phenom. Heat Transfer
10
,
41
51
(
2022
).
16.
I. V.
Marchuk
,
A. L.
Karchevsky
,
A.
Surtaev
, and
O. A.
Kabov
, “
Heat flux at the surface of metal foil heater under evaporating sessile droplets
,”
Int. J. Aerosp. Eng.
2015
,
391036
.
17.
A. L.
Karchevsky
,
I. V.
Marchuk
, and
O. A.
Kabov
, “
Calculation of the heat flux near the liquid-gas-solid contact line
,”
Appl. Math. Modell.
40
,
1029
1037
(
2016
).
18.
M. J.
Gibbons
,
C. M.
Howe
,
P.
Di Marco
, and
A. J.
Robinson
, “
Local heat transfer to an evaporating sessile droplet in an electric field
,”
J. Phys.: Conf. Ser.
745
,
032066
(
2016
).
19.
V. S.
Ajaev
and
O. A.
Kabov
, “
Heat and mass transfer near contact lines on heated surfaces
,”
Int. J. Heat Mass Transfer
108
,
918
932
(
2017
).
20.
V. V.
Cheverda
,
A. L.
Karchevsky
,
I. V.
Marchuk
, and
O. A.
Kabov
, “
Heat flux density in the region of droplet contact line on a horizontal surface of a thin heated foil
,”
Thermophys. Aeromech.
24
,
803
806
(
2017
).
21.
A. L.
Kupershtokh
,
D. A.
Medvedev
, and
A. V.
Alyanov
, “
Simulation of substrate cooling during evaporation of pure vapor from the surface of a thin film and liquid drops
,”
J. Appl. Ind. Math.
(to be published) (
2023
).
22.
C. K.
Aidun
and
J. R.
Clausen
, “
Lattice-Boltzmann method for complex fluids
,”
Annu. Rev. Fluid Mech.
42
,
439
472
(
2010
).
23.
A. L.
Kupershtokh
,
D. A.
Medvedev
, and
D. I.
Karpov
, “
On equations of state in a lattice Boltzmann method
,”
Comput. Math. Appl.
58
,
965
974
(
2009
).
24.
A. L.
Kupershtokh
,
D. A.
Medvedev
, and
I. I.
Gribanov
, “
Thermal lattice Boltzmann method for multiphase flows
,”
Phys. Rev. E
98
,
023308
(
2018
).
25.
Y. H.
Qian
,
D.
d'Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier–Stokes equation
,”
Europhys. Lett.
17
,
479
484
(
1992
).
26.
J. M. V. A.
Koelman
, “
A simple lattice Boltzmann scheme for Navier–Stokes fluid flow
,”
Europhys. Lett.
15
,
603
607
(
1991
).
27.
A. L.
Kupershtokh
, “
New method of incorporating a body force term into the lattice Boltzmann equation
,” in
Proceedings of the 5th International EHD Workshop
(
University of Poitiers
,
Poitiers, France
,
2004
), pp.
241
246
.
28.
A. L.
Kupershtokh
, “
Criterion of numerical instability of liquid state in LBE simulations
,”
Comput. Math. Appl.
59
,
2236
2245
(
2010
).
29.
F.
Bonaccorso
,
A.
Montessori
,
A.
Tiribocchi
,
G.
Amati
,
M.
Bernaschi
,
M.
Lauricella
, and
S.
Succi
, “
LBsoft: A parallel open-source software for simulation of colloidal systems
,”
Comput. Phys. Commun.
256
,
107455
(
2020
).
30.
M. J.
Krause
,
A.
Kummerländer
,
S. J.
Avis
,
H.
Kusumaatmaja
,
D.
Dapelo
,
F.
Klemens
,
M.
Gaedtke
,
N.
Hafen
,
A.
Mink
,
R.
Trunk
,
J. E.
Marquardt
,
M.-L.
Maier
,
M.
Haussmann
, and
S.
Simonis
, “
OpenLB—Open source lattice Boltzmann code
,”
Comput. Math. Appl.
81
,
258
288
(
2021
).
31.
M. A.
Seaton
and
W.
Smith
,
DL MESO User Manual (Version 2.7, 2020)
(
Daresbury Laboratory
,
United Kingdom
,
2020
).
32.
I.
Ginzburg
and
P. M.
Adler
, “
Boundary flow condition analysis for the three-dimensional lattice Boltzmann model
,”
J. Phys. II France
4
,
191
214
(
1994
).
33.
Y. H.
Qian
and
S.
Chen
, “
Finite size effects in lattice-BGK models
,”
Int. J. Mod. Phys. C
8
,
763
771
(
1997
).
34.
A. L.
Kupershtokh
,
D. I.
Karpov
,
D. A.
Medvedev
,
C.
Stamatelatos
,
V. P.
Charalambakos
,
E. C.
Pyrgioti
, and
D. P.
Agoris
, “
Stochastic models of partial discharge activity in solid and liquid dielectrics
,”
IET Sci. Meas. Technol.
1
,
303
311
(
2007
).
35.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
(
Elsevier Butterworth-Heinemann
,
Oxford
,
1980
).
36.
J.
Hardy
,
O.
de Pazzis
, and
Y.
Pomeau
, “
Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions
,”
Phys. Rev. A
13
,
1949
1961
(
1976
).
37.
Q.
Li
,
K. H.
Luo
,
D. Q.
Kang
, and
Q.
Chen
, “
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
,”
Phys. Rev. E
90
,
053301
(
2014
).
38.
A. L.
Kupershtokh
, “
Contact angles in the presence of an electrical field
,”
J. Phys.: Conf. Ser.
1675
,
012106
(
2020
).
39.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
(
Pergamon Press Inc
.,
Oxford
,
1984
).
You do not currently have access to this content.