Formation of the brain tissue backspatter after penetrating gunshots to the head is preceded and driven by formation and evolution of the bullet channel, which is filling with air and/or muzzle gases or issuing them with tissue fragments or without them. This process is explored here in a model situation in the framework of the dynamics of waves in brain tissue affected by its realistic rheological behavior, fragmentation, and gas dynamics in the evolving bullet channel. As a rheological model of the brain tissue, a new strain-energy function W, introduced in the accompanying work, is employed, which expresses the strain energy as a rational function of the principal invariants of the Cauchy tensor C. This strain-energy function W generates a hyperelastic constitutive equation, which resembles the behavior of brain tissues, i.e., reveals a much stronger resistance to compression than to stretching and strongly nonlinear response in simple shear. This new rheological model belongs to the class of hyperelastic models used for description of hydrogels. The equations of motion supplemented by this rheological model reveal the dynamics of the compression and rarefaction waves propagating through the brain tissue following the formation of the bullet channel. These waves are reflected from the skull and the bullet channel. In parallel, gas dynamics of air and/or muzzle gases flowing into or issued outward of the bullet channel, and stretching-driven fragmentation of the brain tissue are evolving in concert with the wave dynamics in the brain tissue. This allows for prediction of backspatter of the brain tissue resulting from a short-range shooting.

1.
Astarita
,
G.
and
Marrucci
,
G.
,
Principles of Non-Newtonian Fluid Mechanics
(
McGraw-Hill
,
New York
,
1974
).
2.
Attinger
,
D.
,
Comiskey
,
P. M.
,
Yarin
,
A. L.
, and
de Brabanter
,
K.
, “
Determining the region of origin of blood spatters using probabilities and fluid dynamics
,”
Forensic Sci. Int.
298
,
323
331
(
2019a
).
3.
Attinger
,
D.
,
Liu
,
Y.
,
Faflak
,
R.
,
Rao
,
Y.
,
Struttman
,
B. A.
,
De Brabanter
,
K.
,
Comiskey
,
P. M.
, and
Yarin
,
A. L.
, “
A data set of bloodstain patterns for teaching and research in bloodstain pattern analysis: Gunshot backspatters
,”
Data Brief
22
,
269
278
(
2019b
).
4.
Budday
,
S.
,
Ovaert
,
T. C.
,
Holzaphel
,
G. A.
,
Steinmann
,
P.
, and
Kuhl
,
E.
, “
Fifty shades of brain: A review of the mechanical testing and modeling of brain tissue
,”
Arch. Comput. Methods Eng.
27
,
1187
1230
(
2020
).
5.
Chen
,
K.
,
Michael
,
J.
, and
Yarin
,
A. L.
, “
Effect of secondary atomization on blood backspatter affected by muzzle gases
,”
Phys. Fluids
35
,
044115
(
2023
).
6.
Comiskey
,
P. M.
,
Attinger
,
D.
, and
Yarin
,
A. L.
, “
Implications of two backward blood spatter models based on fluid dynamics for bloodstain pattern analysis
,”
Forensic Sci. Int.
301
,
299
305
(
2019
).
7.
Comiskey
,
P. M.
,
Yarin
,
A. L.
, and
Attinger
,
D.
, “
Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis
,”
Phys. Rev. Fluids
2
,
073906
(
2017a
).
8.
Comiskey
,
P. M.
,
Yarin
,
A. L.
, and
Attinger
,
D.
, “
High-speed video analysis of forward and backward spattered blood droplets
,”
Forensic Sci. Int.
276
,
134
141
(
2017b
).
9.
Comiskey
,
P. M.
,
Yarin
,
A. L.
, and
Attinger
,
D.
, “
Theoretical and experimental investigation of forward spatter of blood from a gunshot
,”
Phys. Rev. Fluids
3
,
063901
(
2018
).
10.
Comiskey
,
P. M.
,
Yarin
,
A. L.
,
Kim
,
S.
, and
Attinger
,
D.
, “
Prediction of blood backspatter from a gunshot in bloodstain pattern analysis
,”
Phys. Rev. Fluids
1
,
043201
(
2016
).
11.
Culick
,
F.
, “
Comments on a ruptured soap film
,”
J. Appl. Phys.
31
,
1128
1129
(
1960
).
12.
Faflak
,
R.
and
Attinger
,
D.
, “
Experimental study of how far blood spatter stains on fabrics can be found from the blood source, and relevance to crime scene reconstruction
,”
Exp. Fluids
62
,
87
(
2021
).
13.
Flight
,
C.
,
Jones
,
M.
, and
Ballantyne
,
K. N.
, “
Determination of the maximum distance blood spatter travels from a vertical impact
,”
Forensic Sci. Int.
293
,
27
36
(
2018
).
14.
Goldstein
,
L. E.
,
Fisher
,
A. W.
,
Tagge
,
C. A.
,
Zhang
,
X.-L.
,
Velisek
,
L.
,
Sullivan
,
J. A.
,
Upreti
,
C.
,
Kracht
,
J. M.
,
Ericsson
,
M.
,
Wojnarowicz
,
M. W.
,
Goletiani
,
C. J.
,
Maglakelidze
,
G. M.
,
Casey
,
N.
,
Moncaster
,
J. A.
,
Minaeva
,
O.
,
Moir
,
R. D.
,
Nowinski
,
C. J.
,
Stern
,
R. A.
,
Cantu
,
R. C.
,
Geiling
,
J.
,
Blusztajn
,
J. K.
,
Wolozin
,
B. L.
,
Ikezu
,
T.
,
Stein
,
T. D.
,
Budson
,
A. E.
,
Kowall
,
N. W.
,
Chargin
,
D.
,
Sharon
,
A.
,
Saman
,
S.
,
Hall
,
G. F.
,
Moss
,
W. C.
,
Cleveland
,
R. O.
,
Tanzi
,
R. E.
,
Stanton
,
P. K.
, and
McKee
,
A. C.
, “
Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model
,”
Sci. Transl. Med.
4
,
134ra60
(
2012
).
15.
Huh
,
J.
,
Kim
,
S.
,
Bang
,
B.-H.
,
Aldalbahi
,
A.
,
Rahaman
,
M.
,
Yarin
,
A. L.
, and
Yoon
,
S. S.
, “
The effect of muzzle gas on forward blood spatter from a gunshot: The experiments with supersonic de Laval nozzle
,”
Phys. Fluids
35
,
097112
(
2023
).
16.
Kainz
,
M. P.
,
Greiner
,
A.
,
Hinrichsen
,
J.
,
Kolb
,
D.
,
Comellas
,
E.
,
Steinmann
,
P.
,
Budday
,
S.
,
Terzano
,
M.
, and
Holzapfel
,
G.
, “
Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
,”
Front. Bioeng. Biotechnol.
11
,
1143304
(
2023
).
17.
Karger
,
B.
, “
Penetrating gunshots to the head and lack of immediate incapacitation—I: Wound ballistics and mechanisms of incapacitation
,”
Int. J. Leg. Med.
108
,
53
61
(
1995
).
18.
Karger
,
B.
,
Nusse
,
R.
,
Schroeder
,
G.
,
Wustenbecker
,
S.
, and
Brinkmann
,
B.
, “
Backspatter from experimental close-range shots to the head
,”
Int. J. Leg. Med.
109
,
66
74
(
1996
).
19.
Karger
,
B.
,
Nusse
,
R.
,
Troger
,
H. D.
, and
Brinkmann
,
B.
, “
Backspatter from experimental close-range shots to the head—II: Microbackspatter and the morphology of bloodstains
,”
Int. J. Leg. Med.
110
,
27
30
(
1997
).
20.
Khansari
,
S.
,
Sinha-Ray
,
S.
,
Yarin
,
A. L.
, and
Pourdeyhimi
,
B.
, “
Stress-strain dependence for soy-protein nanofiber mats
,”
J. Appl. Phys.
111
,
044906
(
2012
).
21.
Kwon
,
E.
,
Singh
,
M. R.
,
Vallabh
,
R. D.
,
Das
,
R.
,
Taylor
,
M. C.
, and
Fernandez
,
J. W.
, “
Modelling ballistic cranial injury and backspatter using smoothed particle hydrodynamics
,”
Comput. Methods Biomech. Biomed. Eng.
8
,
478
491
(
2020
).
22.
Landau
,
L. D.
and
Lifshitz
,
E. M.
,
Fluid Mechanics
(
Pergamon Press
,
New York
,
1987
).
23.
Landau
,
L. D.
and
Lifshitz
,
E. M.
,
Statistical Physics
(
Butterworth-Heinemann
,
Oxford
,
2013
).
24.
Lane
,
B. A.
,
Harmon
,
K. A.
,
Goodwin
,
R. L.
,
Yost
,
M. J.
,
Shazly
,
T.
, and
Eberth
,
J. F.
, “
Constitutive modeling of compressible type-I collagen hydrogels
,”
Med. Eng. Phys.
53
,
39
48
(
2018
).
25.
Lee
,
M. W.
,
An
,
S.
,
Jo
,
H. S.
,
Yoon
,
S. S.
, and
Yarin
,
A. L.
, “
Self-healing nanofiber-reinforced polymer composites: 2. Delamination/debonding and adhesive and cohesive properties
,”
ACS Appl. Mater. Interfaces
7
,
19555
19561
(
2015
).
26.
Lehmann
,
J. F.
and
de Lateur
,
B. J.
, “Therapeutic heat,” in
Therapeutic Heat and Cold
,
3rd ed
., edited by
J. F.
Lehmann
(
Williams & Wilkins
,
Baltimore
,
1982
), pp.
404
562
.
27.
Li
,
G.
,
Sliefert
,
N.
,
Michael
,
J. B.
, and
Yarin
,
A. L.
, “
Blood backspatter interaction with propellant gases
,”
Phys. Fluids
33
,
043318
(
2021
).
28.
Librovich
,
V. B.
and
Yarin
,
A. L.
, “
Effect of mechanical stresses on the combustion rate of mixed solid propellants
,”
Combust. Explos. Shock Waves
18
,
547
551
(
1982
).
29.
Loitsyanskii
,
L. G.
,
Mechanics of Liquids and Gases
(
Elsevier Science
,
Amsterdam
,
2014
).
30.
Lurie
,
A. I.
,
Theory of Elasticity
(
Springer
,
Heidelberg
,
2005
).
31.
Madough
,
F. A.
and
Ramesh
,
K. T.
, “
The influence of shear anisotropy in mTBI: A white matter constitutive model
,”
Ann. Biomed. Eng.
47
,
1960
1970
(
2019
).
32.
Mattheij
,
R. M. M.
,
Rienstra
,
S. W.
, and
ten Thije Boonkkamp
,
J. H. M.
,
Partial Differential Equations
(
SIAM
,
Philadelphia
,
2005
).
33.
Ogden
,
R. M.
, “
Large deformation isotropic elasticity—On the correlation of theory and experiment for incompressible rubberlike solids
,”
Proc. R. Soc. London A
326
,
565
584
(
1972
).
34.
Ogden
,
R. M.
,
Nonlinear Elastic Deformations
(
Dover
,
New York
,
1997
).
35.
Radford
,
G. E.
,
Taylor
,
M. C.
,
Kieser
,
J. A.
,
Waddell
,
J. N.
,
Walsh
,
K. A. J.
,
Schofield
,
J. C.
,
Das
,
R.
, and
Chakravorty
,
E.
, “
Simulating backspatter of blood from cranial gunshot wounds using pig models
,”
Int. J. Legal Med.
130
,
985
994
(
2016
).
36.
Schyma
,
C.
,
Baumann
,
F.
,
Madea
,
B.
, and
Gotsmy
,
W.
, “
Study of backspatter using high‐speed video of experimental gunshots
,”
Forensic Sci. Med. Pathol.
17
,
36
46
(
2021
).·
37.
Sliefert
,
N.
,
Li
,
G.
,
Michael
,
J. B.
, and
Yarin
,
A. L.
, “
Experimental and numerical study of blood backspatter interaction with firearm propellant gases
,”
Phys. Fluids
33
,
043319
(
2021
).
38.
Stanyukovich
,
K. P.
,
Transient Motions of Continua
(
Nauka
,
Moscow
,
1971
).
39.
Stauffer
,
D.
, “
Scaling theory of percolation clusters
,”
Phys. Rep.
54
,
1
74
(
1979
).
40.
Stauffer
,
D.
,
Introduction to Percolation Theory
(
Taylor and Francis
,
London
,
1985
).
41.
Stumpf
,
B.
,
Roisman
,
I. V.
,
Yarin
,
A. L.
, and
Tropea
,
C.
, “
Drop impact onto a substrate wetted by another liquid: Corona detachment from the wall film
,”
J. Fluid Mech.
956
,
A10
(
2023
).
42.
Su
,
L.
,
Wang
,
M.
,
Yin
,
J.
,
Ti
,
F.
,
Yang
,
J.
,
Ma
,
C.
,
Liu
,
S.
, and
Lu
,
T. J.
, “
Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale
,”
Acta Biomater.
155
,
423
435
(
2023
).
43.
Taylor
,
G. I.
, “
The dynamics of thin sheets of fluid—III: Disintegration of fluid sheets
,”
Proc. R. Soc. London A
253
,
625
639
(
1959
).
44.
Wen
,
Y.
,
Xu
,
C.
,
Jin
,
Y.
, and
Batra
,
R. C.
, “
Rifle bullet penetration into ballistic gelatin
,”
J. Mech. Behavior Biomed. Mater.
67
,
40
50
(
2017
).
45.
Yarin
,
A. L.
, “
Stimuli-responsive polymers in nanotechnology: Deposition and possible effect on drug release
,”
Math. Model. Nat. Phenom.
3
,
1
15
(
2008
).
46.
Yarin
,
A. L.
and
Kosmerl
,
V.
, “
Rheology of brain tissue and hydrogels: A novel hyperelastic and viscoelastic model
,”
Phys. Fluids
35
,
101910
(
2023
).
47.
Yarin
,
A. L.
,
Lee
,
M. W.
,
An
,
S.
, and
Yoon
,
S. S.
,
Self-Healing Nanotextured Vascular Engineering Materials
(
Springer Nature
,
Switzerland AG, Cham
,
2019
).
48.
Yarin
,
A. L.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
Collision Phenomena in Liquids and Solids
(
Cambridge University Press
,
Cambridge
,
2017
).
49.
Zel'dovich
,
Y. B.
and
Stanyukovich
,
K. P.
, “
Reflection of a plane detonation wave
,”
Dokl. Akad. Nauk SSSR
55
(
7
),
591
(
1947
).
You do not currently have access to this content.