A new strain-energy function W, which possesses the strain energy expressible as a rational function of the principal invariants of the Cauchy tensor C, is proposed. It generates a hyperelastic constitutive equation with characteristics of brain tissues: a much stronger resistance to compression than to stretching and strongly nonlinear response in simple shear, including non-zero first and second normal differences. This model exponent α resembles the Ogden model in uniaxial stretching/compression and reveals plausible predictions for brain tissue with even values of α < 0 with sufficiently high magnitude (say, at α = −20). However, the dependence of the strain-energy function W on the principal invariants of C links it to hyperelastic hydrogel models (the Special and General Blatz–Ko models, neo-Hookean materials, incompressible Mooney–Rivlin and the Yeoh models). For α = −8, the present model reveals a compression/stretching behavior close to the tensorial Special Blatz–Ko model used for description of hydrogels. Furthermore, the present hyperelastic model is used as a kernel of the corresponding tensorial viscoelastic model with exponential fading memory. It belongs to the class of the integral Bernstein–Kearsley–Zapas (BKZ) models. In a number of important cases (the uniaxial stretching/compression, simple shear), it can be transformed into a differential viscoelastic model and predict viscoelastic liquid-like behavior under sustained deformations. The stress relaxation following an imposed strain reduces to the hyperelastic model with the elastic parameters exponentially fading in time. These tensorial hyperelastic and viscoelastic constitutive equations aim applications in modeling of blast-induced traumatic brain injuries and bullet penetration and spatter of brain tissue in forensic context.

1.
Astarita
,
G.
and
Marrucci
,
G.
,
Principles of Non-Newtonian Fluid Mechanics
(
McGraw-Hill
,
New York
,
1974
).
2.
Bird
,
R. B.
,
Curtiss
,
C. F.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
Dynamics of Polymeric Liquids
(
John Wiley & Sons
,
New York
,
1987
).
3.
Budday
,
S.
,
Ovaert
,
T. C.
,
Holzaphel
,
G. A.
,
Steinmann
,
P.
, and
Kuhl
,
E.
, “
Fifty shades of brain: A review of the mechanical testing and modeling of brain tissue
,”
Arch. Comput. Methods Eng.
27
,
1187
1230
(
2020
).
4.
Eberth
,
J. F.
and
Shazly
,
T.
, “
Nonlinear mechanics of soft biological materials
,” in
Biomaterial Mechanics
, edited by
H.
Hayenga
and
H.
Aranda-Espinoza
(
CRC Press
,
Boca Raton
,
2017
), pp.
25
50
.
5.
Finan
,
J. D.
,
Sundaresh
,
S. N.
,
Elkin
,
B. S.
,
McKhann
,
G. M.
II
, and
Morroison
,
B.,
III
, “
Regional mechanical properties of human brain tissue for computational models of traumatic brain injury
,”
Acta Biomater.
55
,
333
339
(
2017
).
6.
Flint
,
R. D.
,
Li
,
Y.
,
Wang
,
P. T.
,
Vaidya
,
M.
,
Barry
,
A.
,
Ghassemi
,
M.
,
Tomic
,
G.
,
Brkic
,
N.
,
Ripley
,
D.
, and
Liu
,
C.
, “
Noninvasively recorded high-gamma signals improve synchrony of force feedback in a novel neurorehabilitation brain–machine interface for brain injury
,”
J. Neural Eng.
19
,
036024
(
2022
).
7.
Garimella
,
H. T.
,
Menghani
,
R. R.
,
Gerber
,
J. I.
,
Sridhar
,
S.
, and
Kraft
,
R. H.
, “
Embedded finite elements for modeling axonal injury
,”
Ann. Biomed. Eng.
47
,
1889
1907
(
2019
).
8.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzaphel
,
G. A.
, “
Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
,”
J. R. Soc. Interface
3
,
15
35
(
2006
).
9.
George
,
J.
,
Hsu
,
C.-C.
,
Nguyen
,
L. T. B.
,
Ye
,
H.
, and
Cui
,
Z.
, “
Neural tissue engineering with structured hydrogels in CNS models and therapies
,”
Biotechnol. Adv.
42
,
107370
(
2020
).
10.
Giudice
,
J. S.
,
Zeng
,
W.
,
Wu
,
T.
,
Alshareef
,
A.
,
Shedd
,
D. F.
, and
Panzer
,
M. B.
, “
An analytical review of the numerical methods used for finite element modeling of traumatic brain injury
,”
Ann. Biomed. Eng.
47
,
1855
1972
(
2019
).
11.
Hartmann
,
S.
and
Neff
,
P.
, “
Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility
,”
Int. J. Solids Struct.
40
,
2767
2791
(
2003
).
12.
Holzaphel
,
G. A.
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
(
John Wiley & Sons
,
Chichester
,
2000
).
13.
Kainz
,
M. P.
,
Greiner
,
A.
,
Hinrichsen
,
J.
,
Kolb
,
D.
,
Comellas
,
E.
,
Steinmann
,
P.
,
Budday
,
S.
,
Terzano
,
M.
, and
Holzapfel
,
G. A.
, “
Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
,”
Front. Bioeng. Biotechnol.
11
,
1143304
(
2023
).
14.
Karger
,
B.
, “
Penetrating gunshots to the head and lack of immediate incapacitation. I. Wound ballistics and mechanisms of incapacitation
,”
Int. J. Leg. Med.
108
,
53
61
(
1995
).
15.
Karger
,
B.
,
Nüsse
,
R.
,
Schroeder
,
G.
,
Wustenbecker
,
S.
, and
Brinkmann
,
B.
, “
Backspatter from experimental close-range shots to the head. I. Macrobackspatter
,”
Int. J. Leg. Med.
109
,
66
74
(
1996
).
16.
Karger
,
B.
,
Nüsse
,
R.
,
Tröger
,
H. D.
, and
Brinkmann
,
B.
, “
Backspatter from experimental close-range shots to the head. II. Microbackspatter and the morphology of bloodstains
,”
Int. J. Leg. Med.
110
,
27
30
(
1997
).
17.
Kedrinskiy
,
V. K.
,
Hydrodynamics of Explosion: Experiments and Models
(
Springer Science & Business Media
,
Berlin
,
2006
).
18.
Kosmerl
,
V.
and
Yarin
,
A. L.
, “Penetrating gunshots to the head after close-range shooting: Dynamics of waves and the effect of brain tissue rheology,”
Phys. Fluids
(in press) (
2023
).
19.
Landau
,
L. D.
and
Lifshitz
,
E. M.
,
Theory of Elasticity
(
Pergamon Press
,
Oxford
,
1970
).
20.
Lane
,
B. A.
,
Harmon
,
K. A.
,
Goodwin
,
R. L.
,
Yost
,
M. J.
,
Shazly
,
T.
, and
Eberth
,
J. F.
, “
Constitutive modeling of compressible type-I collagen hydrogels
,”
Med. Eng. Phys.
53
,
39
48
(
2018
).
21.
Lodge
,
A.
,
Elastic Liquids
(
Academic Press
,
London
,
1964
).
22.
Lu
,
Y.-C.
,
Daphalapurkar
,
N. P.
,
Knutsen
,
A. K.
,
Glaister
,
J.
,
Pham
,
D. L.
,
Butman
,
J. A.
,
Prince
,
J. L.
,
Bayly
,
P. V.
, and
Ramesh
,
K. T.
, “
A 3D computational head model under dynamic head rotation and head extension validated using live human brain data, including the falx and the tentorium
,”
Ann. Biomed. Eng.
47
,
1923
1940
(
2019
).
23.
Lurie
,
A. I.
,
Theory of Elasticity
(
Springer
,
Heidelberg
,
2005
).
24.
MacAulay
,
N.
, “
Molecular mechanisms of brain water transport
,”
Nat. Rev. Neurosci.
22
,
326
344
(
2021
).
25.
MacDonald
,
J. R.
, “
Some simple isothermal equations of state
,”
Rev. Mod. Phys.
38
,
669
679
(
1966
).
26.
Madhukar
,
A.
and
Ostoja-Starzewski
,
M.
, “
Finite element methods in human head impact simulations: A review
,”
Ann. Biomed. Eng.
47
,
1832
1854
(
2019
).
27.
Madouh
,
F. A.
and
Ramesh
,
K. T.
, “
The influence of shear anisotropy in mTBI: A white matter constitutive model
,”
Ann. Biomed. Eng.
47
,
1960
1970
(
2019
).
28.
Martikainen
,
L.
,
Bertula
,
K.
,
Turunen
,
M.
, and
Ikkala
,
O.
, “
Strain stiffening and negative normal force of agarose hydrogel
,”
Macromolecules
53
,
9983
9992
(
2020
).
29.
Ogden
,
R. M.
, “
Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids
,”
Proc. R. Soc. A
326
,
565
584
(
1972
).
30.
Ogden
,
R. M.
,
Nonlinear Elastic Deformations
(
Dover
,
New York
,
1997
).
31.
Plog
,
J.
and
Yarin
,
A. L.
, “
Speed of sound in gypsum slurries with foaming agent and expected spanwise spreading
,”
Exp. Fluids
64
,
125
(
2023
).
32.
Radford
,
G. E.
,
Taylor
,
M. C.
,
Kieser
,
J. A.
,
Waddell
,
J. N.
,
Walsh
,
K. A. J.
,
Schofield
,
J. C.
,
Das
,
R.
, and
Chakravorty
,
E.
, “
Simulating backspatter of blood from cranial gunshot wounds using pig models
,”
Int. J. Leg. Med.
130
,
985
994
(
2016
).
33.
Saunders
,
R. N.
,
Tan
,
X. G.
,
Qidwai
,
S. M.
, and
Bagchi
,
A.
, “
Towards identification of correspondence rules to relate traumatic brain injury in different species
,”
Ann. Biomed. Eng.
47
,
2005
2018
(
2019
).
34.
Son
,
E. E.
,
Dyrenkov
,
A. V.
,
Kyung
,
O.
,
Son
,
K. E.
, and
Velikodny
,
V. Y.
, “
Shock wave in a gas–liquid bubble medium
,”
High Temp.
53
,
882
886
(
2015
).
35.
Su
,
L.
,
Wang
,
M.
,
Yin
,
J.
,
Ti
,
F.
,
Yang
,
J.
,
Ma
,
C.
,
Liu
,
S.
, and
Lu
,
T. J.
, “
Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale
,”
Acta Biomater.
155
,
423
435
(
2023
).
36.
Sundaresh
,
S. N.
,
Finan
,
J. D.
,
Elkin
,
B. S.
,
Basilio
,
A. V.
,
McKhann
,
G. M.
, and
Morroison
,
B.,
III
Region-dependent viscoelastic properties of human brain tissue under large deformations
,”
Ann. Biomed. Eng.
50
,
1452
1460
(
2022
).
37.
te Nijenhuis
,
K.
, “
Viscoelastic polymeric fluids
,” in
Springer Handbook of Experimental Fluid Mechanics
, edited by
C.
Tropea
,
A. L.
Yarin
, and
J.
Foss
(
Springer
,
Heidelberg
,
2007
), pp.
619
646
.
38.
Townsend
,
M. T.
,
Alay
,
E.
,
Skotak
,
M.
, and
Chandra
,
N.
, “
Effect of tissue material properties in blast loading: Coupled experimentation and finite element simulation
,”
Ann. Biomed. Eng.
47
,
2019
2032
(
2019
).
39.
Wen
,
Y.
,
Xu
,
C.
,
Jin
,
Y.
, and
Batra
,
R. C.
, “
Rifle bullet penetration into ballistic gelatin
,”
J. Mech. Behav. Biomed. Mater.
67
,
40
50
(
2017
).
40.
Wilson
,
P. S.
and
Roy
,
R. A.
, “
An audible demonstration of the speed of sound in bubbly liquids
,”
Am. J. Phys.
76
,
975
981
(
2008
).
41.
Wu
,
N.
,
Wan
,
S.
,
Su
,
S.
,
Huang
,
H.
,
Sun
,
G.
, and
Dou
,
L.
, “
Electrode materials for brain–machine interface: A review
,”
InfoMat
3
,
1174
1194
(
2021
).
42.
Wu
,
T.
,
Alshareef
,
A.
,
Giudice
,
J. S.
, and
Panzer
,
M. B.
, “
Explicit modeling of white matter axonal fiber tracts in a finite element brain model
,”
Ann. Biomed. Eng.
47
,
1908
1922
(
2019
).
43.
Yarin
,
A. L.
,
Pourdeyhimi
,
B.
, and
Ramakrishna
,
S.
,
Fundamentals and Applications of Micro- and Nanofibers
(
Cambridge University Press
,
Cambridge
,
2014
).
44.
Yarin
,
A. L.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
Collision Phenomena in Liquids and Solids
(
Cambridge University Press
,
Cambridge
,
2017
).
45.
Yarin
,
A. L.
,
Sankaran
,
A.
,
An
,
S.
, and
Pourdeyhimi
,
B.
, “
Constitutive modeling of polymers accounting for their hyperelasticity, plasticity, creep and viscoelastic relaxation
,”
Polym. Test.
85
,
106444
(
2020
).
You do not currently have access to this content.