In tropical and subtropical ocean gyres, Trichodesmium colonies account for up to half of the total N2 fixation in the ocean, making it one of the most ecologically significant N2-fixing cyanobacteria. The processes whereby Trichodesmium colonies and large-scale surface blooms form have not been investigated thoroughly. In particular, the effects of fluid motion have not been included in previous studies. As the first step toward understanding the mechanical processes associated with Trichodesmium colony synthesis, we propose a shear-related flow-based growth model to enlighten how fluid dynamics affect bacteria colony formation and growth. To investigate the possibility that early growth characteristics are strongly dependent on the shear rate, a two-way coupled fluid-colony interaction is developed using the lattice Boltzmann method for a porous colony. This model captures the exponential growth trend during the colony formation phase found in experiments. Our results show that the flow field significantly impacts both the colony growth rate and shape. In pure shear conditions, colonies grow in circular shapes, whereas in uniform flow, they take filament-like forms. Additionally, the Reynolds number (Re) plays a crucial role in shaping the colonies, especially in uniform flow conditions where its effect is more profound.

1.
D. A.
Hutchins
and
F.
Fu
, “
Microorganisms and ocean global change
,”
Nat. Microbiol.
2
(
6
),
1
11
(
2017
).
2.
G.
Basterretxea
,
J. S.
Font-Munoz
, and
I.
Tuval
, “
Phytoplankton orientation in a turbulent ocean: A microscale perspective
,”
Front. Mar. Sci.
7
,
185
(
2020
).
3.
P. G.
Falkowski
,
T.
Fenchel
, and
E. F.
Delong
, “
The microbial engines that drive earth's biogeochemical cycles
,”
Science
320
(
5879
),
1034
1039
(
2008
).
4.
J. P.
Zehr
and
D. G.
Capone
, “
Changing perspectives in marine nitrogen fixation
,”
Science
368
(
6492
),
eaay9514
(
2020
).
5.
D. A.
Hutchins
and
D. G.
Capone
, “
The marine nitrogen cycle: New developments and global change
,”
Nat. Rev. Microbiol.
20
,
401
414
(
2022
).
6.
J. A.
Sohm
,
E. A.
Webb
, and
D. G.
Capone
, “
Emerging patterns of marine nitrogen fixation
,”
Nat. Rev. Microbiol.
9
(
7
),
499
508
(
2011
).
7.
M. D.
Lee
,
N. G.
Walworth
,
E. L.
McParland
,
F.-X.
Fu
,
T. J.
Mincer
,
N. M.
Levine
,
D. A.
Hutchins
, and
E. A.
Webb
, “
The trichodesmium consortium: Conserved heterotrophic co-occurrence and genomic signatures of potential interactions
,”
ISME J.
11
(
8
),
1813
1824
(
2017
).
8.
D.
Karl
,
A.
Michaels
,
B.
Bergman
,
D.
Capone
,
E.
Carpenter
,
R.
Letelier
,
F.
Lipschultz
,
H.
Paerl
,
D.
Sigman
, and
L.
Stal
, “
Dinitrogen fixation in the world's oceans
,”
Biogeochemistry
57/58
,
47
98
(
2002
).
9.
B.
Bergman
,
G.
Sandh
,
S.
Lin
,
J.
Larsson
, and
E. J.
Carpenter
, “
Trichodesmium–A widespread marine cyanobacterium with unusual nitrogen fixation properties
,”
FEMS Microbiol. Rev.
37
(
3
),
286
302
(
2013
).
10.
K. A.
Confesor
,
C. R.
Selden
,
K. E.
Powell
,
L. A.
Donahue
,
T.
Mellett
,
S.
Caprara
,
A. N.
Knapp
,
K. N.
Buck
, and
P. D.
Chappell
, “
Defining the realized niche of the two major clades of Trichodesmium: A study on the west Florida shelf
,”
Front. Mar. Sci.
9
,
821655
(
2022
).
11.
I.
Bryceson
and
P.
Fay
, “
Nitrogen fixation in Oscillatoria (Trichodesmium) erythraea in relation to bundle formation and trichome differentiation
,”
Mar. Biol.
61
(
2
),
159
166
(
1981
).
12.
F.-X.
Fu
,
Y.
Zhang
,
P. R. F.
Bell
, and
D. A.
Hutchins
, “
Phosphate uptake and growth kinetics of trichodesmium (cyanobacteria) isolates from the North Atlantic Ocean and the Great Barrier Reef, Australia
,”
J. Phycol.
41
(
1
),
62
73
(
2005
).
13.
H.-B.
Jiang
,
F.-X.
Fu
,
S.
Rivero-Calle
,
N. M.
Levine
,
S. A.
Sañudo-Wilhelmy
,
P.-P.
Qu
,
X.-W.
Wang
,
P.
Pinedo-Gonzalez
,
Z.
Zhu
, and
D. A.
Hutchins
, “
Ocean warming alleviates iron limitation of marine nitrogen fixation
,”
Nat. Clim. Change
8
(
8
),
709
712
(
2018
).
14.
P.
Qu
,
F.-X.
Fu
,
J. D.
Kling
,
M.
Huh
,
X.
Wang
, and
D. A.
Hutchins
, “
Distinct responses of the nitrogen-fixing marine cyanobacterium trichodesmium to a thermally variable environment as a function of phosphorus availability
,”
Front. Microbiol.
10
,
1282
(
2019
).
15.
K. L.
Roe
,
K.
Barbeau
,
E. L.
Mann
, and
M. G.
Haygood
, “
Acquisition of iron by trichodesmium and associated bacteria in culture
,”
Environ. Microbiol.
14
(
7
),
1681
1695
(
2012
).
16.
Y.
Tzubari
,
L.
Magnezi
,
A.
Be'er
, and
I.
Berman-Frank
, “
Iron and phosphorus deprivation induce sociality in the marine bloom-forming cyanobacterium Trichodesmium
,”
ISME J.
12
(
7
),
1682
1693
(
2018
).
17.
K.
Ohki
and
Y.
Fujita
, “
Laboratory culture of the pelagic blue-green alga Trichodesmium thiebautii: Conditions for unialgal culture
,”
Mar. Ecol.: Prog. Ser.
7
,
185
190
(
1982
).
18.
K. L.
Roe
and
K. A.
Barbeau
, “
Uptake mechanisms for inorganic iron and ferric citrate in trichodesmium erythraeum IMS101
,”
Metallomics
6
(
11
),
2042
2051
(
2014
).
19.
D. A.
Hutchins
,
F.-X.
Fu
,
Y.
Zhang
,
M. E.
Warner
,
Y.
Feng
,
K.
Portune
,
P. W.
Bernhardt
, and
M. R.
Mulholland
, “
Co2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry
,”
Limnol. Oceanogr.
52
(
4
),
1293
1304
(
2007
).
20.
P. R. F.
Bell
,
P. J.
Uwins
,
I.
Elmetri
,
J. A.
Phillips
,
F.-X.
Fu
, and
A. J.
Yago
, “
Laboratory culture studies of Trichodesmium isolated from the Great Barrier Reef lagoon, Australia
,”
Hydrobiologia
532
(
1
),
9
21
(
2005
).
21.
F.-X.
Fu
and
P. R. F.
Bell
, “
Effect of salinity on growth, pigmentation, N2 fixation and alkaline phosphatase activity of cultured Trichodesmium sp
,”
Mar. Ecol.: Prog. Ser.
257
,
69
76
(
2003
).
22.
J. S.
Guasto
,
R.
Rusconi
, and
R.
Stocker
, “
Fluid mechanics of planktonic microorganisms
,”
Annu. Rev. Fluid Mech.
44
,
373
400
(
2012
).
23.
J.-A.
Arguedas-Leiva
,
J.
Słomka
,
C. C.
Lalescu
,
R.
Stocker
, and
M.
Wilczek
, “
Elongation enhances encounter rates between phytoplankton in turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
32
),
e2203191119
(
2022
).
24.
S.
Ahmerkamp
,
F. M.
Jalaluddin
,
Y.
Cui
,
D. R.
Brumley
,
C. O.
Pacherres
,
J. S.
Berg
,
R.
Stocker
,
M. M.
Kuypers
,
K.
Koren
, and
L.
Behrendt
, “
Simultaneous visualization of flow fields and oxygen concentrations to unravel transport and metabolic processes in biological systems
,”
Cells Rep. Methods
2
(
5
),
100216
(
2022
).
25.
N. A.
Held
,
J. B.
Waterbury
,
E. A.
Webb
,
R. M.
Kellogg
,
M. R.
McIlvin
,
M.
Jakuba
,
F. W.
Valois
,
D. M.
Moran
,
K. M.
Sutherland
, and
M. A.
Saito
, “
Dynamic diel proteome and daytime nitrogenase activity supports buoyancy in the cyanobacterium Trichodesmium
,”
Nat. Microbiol.
7
(
2
),
300
311
(
2022
).
26.
M. M.
Hondzo
,
A.
Kapur
, and
C. A.
Lembi
, “
The effect of small-scale fluid motion on the green alga Scenedesmus quadricauda
,”
Hydrobiologia
364
(
2
),
225
235
(
1997
).
27.
M.
Hondzo
and
D.
Lyn
, “
Quantified small-scale turbulence inhibits the growth of a green alga
,”
Freshwater Biol.
41
(
1
),
51
61
(
1999
).
28.
M.
Schapira
,
L.
Seuront
, and
V.
Gentilhomme
, “
Effects of small-scale turbulence on Phaeocystis globosa (Prymnesiophyceae) growth and life cycle
,”
J. Exp. Mar. Biol. Ecol.
335
(
1
),
27
38
(
2006
).
29.
L.
Li
,
W.
Zhu
,
T.-t.
Wang
,
Y.-g.
Luo
,
F.-l.
Chen
, and
X.
Tan
, “
Effect of fluid motion on colony formation in Microcystis Aeruginosa
,”
Water Sci. Eng.
6
(
1
),
106
116
(
2013
).
30.
A.
Park
,
H.-H.
Jeong
,
J.
Lee
,
K. P.
Kim
, and
C.-S.
Lee
, “
Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel
,”
BioChip J.
5
(
3
),
236
241
(
2011
).
31.
W. E.
Thomas
,
L. M.
Nilsson
,
M.
Forero
,
E. V.
Sokurenko
, and
V.
Vogel
, “
Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli
,”
Mol. Microbiol.
53
(
5
),
1545
1557
(
2004
).
32.
U.
Pfreundt
,
J.
Słomka
,
G.
Schneider
,
A.
Sengupta
,
F.
Carrara
,
V.
Fernandez
,
M.
Ackermann
, and
R.
Stocker
, “
Controlled motility in the cyanobacterium Trichodesmium regulates aggregate architecture
,”
Science
380
(
6647
),
830
835
(
2023
).
33.
N.
Moradi
,
B.
Liu
,
M.
Iversen
,
M. M.
Kuypers
,
H.
Ploug
, and
A.
Khalili
, “
A new mathematical model to explore microbial processes and their constraints in phytoplankton colonies and sinking marine aggregates
,”
Sci. Adv.
4
(
10
),
eaat1991
(
2018
).
34.
B.
Liu
,
K.
Kindler
, and
A.
Khalili
, “
Dynamic solute release from marine aggregates
,”
Limnol. Oceanogr.: Fluids Environ.
2
(
1
),
109
120
(
2012
).
35.
I.
Klawonn
,
M. J.
Eichner
,
S. T.
Wilson
,
N.
Moradi
,
B.
Thamdrup
,
S.
Kümmel
,
M.
Gehre
,
A.
Khalili
,
H.-P.
Grossart
,
D. M.
Karl
et al, “
Distinct nitrogen cycling and steep chemical gradients in trichodesmium colonies
,”
ISME J.
14
(
2
),
399
412
(
2020
).
36.
S.
Ahmerkamp
,
B.
Liu
,
K.
Kindler
,
J.
Maerz
,
R.
Stocker
,
M. M. M.
Kuypers
, and
A.
Khalili
, “
Settling of highly porous and impermeable particles in linear stratification: Implications for marine aggregates
,”
J. Fluid Mech.
931
,
A9
(
2022
).
37.
F.
Jiang
,
H.
Liu
,
X.
Chen
, and
T.
Tsuji
, “
A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem
,”
J. Comput. Phys.
454
,
110963
(
2022
).
38.
T.
Zhang
and
S.
Sun
, “
A coupled lattice Boltzmann approach to simulate gas flow and transport in shale reservoirs with dynamic sorption
,”
Fuel
246
,
196
203
(
2019
).
39.
C.
Bilgi
,
F.
Amlani
,
H.
Wei
,
N.
Rizzi
, and
N. M.
Pahlevan
, “
Thermal and postural effects on fluid mixing and irrigation patterns for intraventricular hemorrhage treatment
,”
Ann. Biomed. Eng.
51
,
1270
1283
(
2023
).
40.
P.-H.
Kao
and
R.-J.
Yang
, “
Simulating oscillatory flows in Rayleigh–Benard convection using the lattice Boltzmann method
,”
Int. J. Heat Mass Transfer
50
(
17–18
),
3315
3328
(
2007
).
41.
X.
Shan
, “
Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method
,”
Phys. Rev. E
55
(
3
),
2780
(
1997
).
42.
Z.
Guo
and
T. S.
Zhao
, “
Lattice Boltzmann model for incompressible flows through porous media
,”
Phys. Rev. E
66
(
3
),
036304
(
2002
).
43.
B.
An
,
J. M.
Bergadà
,
F.
Mellibovsky
, and
W. M.
Sang
, “
New applications of numerical simulation based on lattice Boltzmann method at high Reynolds numbers
,”
Comput. Math. Appl.
79
(
6
),
1718
1741
(
2020
).
44.
A.
Fakhari
and
T.
Lee
, “
Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers
,”
Phys. Rev. E
87
(
2
),
023304
(
2013
).
45.
L. A.
Hegele
, Jr.
,
A.
Scagliarini
,
M.
Sbragaglia
,
K. K.
Mattila
,
P. C.
Philippi
,
D. F.
Puleri
,
J.
Gounley
, and
A.
Randles
, “
High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method
,”
Phys. Rev. E
98
(
4
),
043302
(
2018
).
46.
K.
Timm
,
H.
Kusumaatmaja
, and
A.
Kuzmin
,
The Lattice Boltzmann Method: Principles and Practice
(
Springer Cham
,
2016
).
47.
D. A.
Wolf-Gladrow
,
Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction
(
Springer
,
2004
).
48.
X.
He
and
L.-S.
Luo
, “
Lattice Boltzmann model for the incompressible Navier–Stokes equation
,”
J. Stat. Phys.
88
(
3–4
),
927
944
(
1997
).
49.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
(
4
),
046308
(
2002
).
50.
R. G.
Owens
, “
A new microstructure-based constitutive model for human blood
,”
J. Non-Newtonian Fluid Mech.
140
(
1–3
),
57
70
(
2006
).
51.
J.
Hommel
,
E.
Coltman
, and
H.
Class
, “
Porosity–permeability relations for evolving pore space: A review with a focus on (bio-) geochemically altered porous media
,”
Transp. Porous Media
124
(
2
),
589
629
(
2018
).
52.
M.
Kaviany
, “
Laminar flow through a porous channel bounded by isothermal parallel plates
,”
Int. J. Heat Mass Transfer
28
(
4
),
851
858
(
1985
).
53.
K.
Vafai
and
S. J.
Kim
, “
Forced convection in a channel filled with a porous medium: An exact solution
,”
ASME J. Heat Mass Transfer
111
(
4
),
1103
1106
(
1989
).
54.
D. A.
Nield
,
S. L. M.
Junqueira
, and
J. L.
Lage
, “
Forced convection in a fluid-saturated porous-medium channel with isothermal or isoflux boundaries
,”
J. Fluid Mech.
322
,
201
214
(
1996
).
55.
A.
Nakayama
, “
Non-Darcy Couette flow in a porous medium filled with an inelastic non-Newtonian fluid
,”
J. Fluids Eng.
114
,
642
647
(
1992
).
56.
A. V.
Kuznetsov
, “
Analytical investigation of heat transfer in Couette flow through a porous medium utilizing the Brinkman-Forchheimer-extended Darcy model
,”
Acta Mech.
129
(
1
),
13
24
(
1998
).
57.
R.
Portela
,
P. L.
Almeida
,
P.
Patricio
,
T.
Cidade
,
R. G.
Sobral
, and
C. R.
Leal
, “
Real-time rheology of actively growing bacteria
,”
Phys. Rev. E
87
(
3
),
030701
(
2013
).
58.
P.
Patricio
,
P. L.
Almeida
,
R.
Portela
,
R. G.
Sobral
,
I. R.
Grilo
,
T.
Cidade
, and
C. R.
Leal
, “
Living bacteria rheology: Population growth, aggregation patterns, and collective behavior under different shear flows
,”
Phys. Rev. E
90
(
2
),
022720
(
2014
).
59.
T. O.
Delmont
, “
Discovery of nondiazotrophic trichodesmium species abundant and widespread in the open ocean
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
46
),
e2112355118
(
2021
).
60.
M. J.
Eichner
,
I.
Klawonn
,
S. T.
Wilson
,
S.
Littmann
,
M. J.
Whitehouse
,
M. J.
Church
,
M. M.
Kuypers
,
D. M.
Karl
, and
H.
Ploug
, “
Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCo2
,”
ISME J.
11
(
6
),
1305
1317
(
2017
).
61.
M.
Eichner
,
K.
Inomura
,
J. J.
Pierella Karlusich
, and
Y.
Shaked
, “
Better together? lessons on sociality from Trichodesmium
,”
Trends Microbiol.
31
,
1072
(
2023
).
You do not currently have access to this content.