In this study, we assume that blood is assumed to be a viscoelastic and incompressible homogeneous media in which several uniform sized oxygen bubbles are uniformly distributed. Based on this, we establish a (3 + 1)-dimensional modified Kadomtsev–Petviashvili (mKP) equation to describe the long nonlinear pressure waves in the gas bubbles–liquid mixtures. Using bell polynomials, a new bilinear form of the mKP equation is constructed, and then the one- and two-soliton solutions of the equation are obtained by the Hirota method. Via the one-soliton solutions, parametric conditions of the existence of shock wave, elevation and depression solitons, and the Mach reflection characters in the mixtures are discussed. Soliton interactions have been discussed on the basis of the two-soliton solutions. We find that the (i) parallel elastic interactions can exist between the shock and elevation solitons; (ii) oblique elastic interactions can exist between the (a) shock and depression solitons and (b) the elevation and depression solitons; and (iii) oblique inelastic interactions can exist between the two depression solitons.

1.
X.
Yang
and
C. C.
Church
, “
A model for the dynamics of gas bubbles in soft tissue
,”
J. Acoust. Soc. Am
118
,
3595
3606
(
2005
).
2.
K.
Chen
,
B. M.
James
, and
L. Y.
Alexander
, “
Effect of secondary atomization on blood backspatter affected by muzzle gases
,”
Phys. Fluids
35
,
044115
(
2023
).
3.
J. S.
Allen
and
R. A.
Roy
, “
Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear viscoelasticity
,”
J. Acoust. Soc. Am.
108
,
1640
1650
(
2000
).
4.
N. A.
Kudryashov
and
D. I.
Sinelshchikov
, “
Equation for three-dimensional nonlinear waves in liquid with gas bubbles
,”
Phys. Scr.
85
,
025402
(
2012
).
5.
L.
Gen
,
S.
Nathaniel
,
B. M.
James
, and
L. Y.
Alexander
, “
Blood backspatter interaction with propellant gases
,”
Phys. Fluids
33
,
043318
(
2021
).
6.
Y. G.
Alexander
,
L. Y.
Alexander
,
Z. B.
Pinhas
,
D. G.
Michael
, and
G.
Bai
, “
Numerical modeling of two-fluid Taylor–Couette flow with deformable capillary liquid–liquid interface
,”
Phys. Fluids
16
,
4066
4074
(
2004
).
7.
H. S.
Fogler
and
J. D.
Goddard
, “
Collapse of spherical cavities in viscoelastic fluids
,”
Phys. Fluids
13
,
1135
1141
(
1970
).
8.
W. J.
Yang
, “
Dynamics of gas bubbles in whole blood and plasma
,”
J. Biomech.
4
,
119
125
(
1971
).
9.
A.
Shima
,
T.
Tsujino
, and
H.
Nanjo
, “
Nonlinear oscillations of gas bubbles in viscoelastic fluids
,”
Ultrasonics
24
,
142
147
(
1986
).
10.
R.
Egashira
,
T.
Yano
, and
S.
Fujikawa
, “
Linear wave propagation of fast and slow modes in mixtures of liquid and gas bubbles
,”
Fluid Dyn. Res.
34
,
317
334
(
2004
).
11.
N. A.
Kudryashov
and
D. I.
Sinelshchikov
, “
Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer
,”
Phys. Lett. A
374
,
2011
2016
(
2010
).
12.
Z. H.
Xu
,
Y.
Wang
,
Z. Q.
Liu
,
J. C.
Mcwilliams
, and
J.
Gan
, “
Insight into the dynamics of the radiating internal tide associated with the Kuroshio current
,”
J. Geophys. Res.
126
,
e2020JC017018
, https://doi.org/10.1029/2020JC017018 (
2021
).
13.
C.
Zhao
,
Z. H.
Xu
,
R.
Robertson
,
Q.
Li
,
Y.
Wang
, and
B. S.
Yin
, “
The three dimensional internal tide radiation and dissipation in the Mariana arc-trench system
,”
J. Geophys. Res.
126
,
e2020JC016502
, https://doi.org/10.1029/2020JC016502 (
2021
).
14.
Y. H.
Bi
,
Z. G.
Zhang
,
Q. S.
Liu
, and
T. J.
Liu
, “
Research on nonlinear waves of blood flow in arterial vessels
,”
Commun. Nonlinear Sci. Numer. Simul.
102
,
105918
(
2021
).
15.
C. R.
Yan
,
Q. S.
Liu
, and
Y. H.
Bi
, “
Bifurcation analyses and potential landscapes of a cortex-basal ganglia-thalamus model
,”
IET Syst. Biol.
15
,
101
(
2021
).
16.
Y. G.
Alexander
,
L. Y.
Alexander
, and
Z. B.
Pinhas
, “
Three-dimensional instability of a two-layer Dean flow
,”
Phys. Fluids
13
,
3185
3195
(
2001
).
17.
N.
Nasreen
,
A. R.
Seadawy
,
D.
Lu
, and
W. A.
Albarakati
, “
Dispersive solitary wave and soliton solutions of the generalized third order nonlinear Schrödinger dynamical equation by modified analytical method
,”
Results Phys.
15
,
102641
(
2019
).
18.
B. F.
Feng
and
T.
Kawahara
, “
Stationary travelling-wave solutions of an unstable KdV-Burgers equation
,”
Physica D
137
,
228
236
(
2000
).
19.
A. M.
Wazwaz
, “
Single and multiple-soliton solutions for the (2 + 1)-dimensional KdV equation
,”
Appl. Math. Comput.
204
,
20
26
(
2008
).
20.
Y. H.
Sun
,
Y. T.
Gao
,
G. Q.
Meng
,
X.
Yu
,
Y. J.
Shen
, and
Z. Y.
Sun
, “
Bilinear forms and soliton interactions for two generalized KdV equations for nonlinear waves
,”
Nonlinear Dyn.
78
,
349
357
(
2014
).
21.
J.
Wang
,
R. G.
Zhang
, and
L. G.
Yang
, “
Solitary waves of nonlinear barotropic–baroclinic coherent structures
,”
Phys. Fluids
32
,
096604
(
2020
).
22.
D.
Bilman
,
R.
Buckingham
, and
D. S.
Wang
, “
Far-field asymptotics for multiple-pole solitons in the large-order limit
,”
J. Differ. Equations
297
,
320
369
(
2021
).
23.
D. S.
Wang
and
X. Y.
Wen
, “
The Riemann-Hilbert approach to the generalized second-order flow of three-wave hierarchy
,”
Appl. Anal.
101
,
5743
5759
(
2022
).
24.
W.
Cui
and
Q. L.
Zha
, “
Multiple rogue wave and breather solutions for the (3 + 1)-dimensional KPI equation
,”
Comput. Math. Appl.
76
,
1099
1107
(
2018
).
25.
Z. J.
Xiao
,
B.
Tian
, and
Y.
Sun
, “
Soliton interactions and Bäcklund transformation for a (2 + 1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili equation in fluid dynamics
,”
Mod. Phys. Lett. B
32
,
1750170
(
2018
).
26.
H.
Tsuji
and
M.
Oikawa
, “
Two-dimensional interaction of solitary waves in a modified Kadomtsev–Petviashvili equation
,”
J. Phys. Soc. Jpn.
73
,
3034
3043
(
2004
).
27.
Z. Y.
Sun
,
Y. T.
Gao
,
Y.
Xin
,
X. H.
Meng
, and
Y.
Liu
, “
Inelastic interactions of the multiple-front waves for the modified Kadomtsev–Petviashvili equation in fluid dynamics, plasma physics and electrodynamics
,”
Wave Motion
46
,
511
521
(
2009
).
28.
A. M.
Wazwaz
, “
Multi-front waves for extended form of modified Kadomtsev-Petviashvili equation
,”
Appl. Math. Mech. Eng.
32
,
875
880
(
2011
).
29.
Y.
Chen
,
Z.
Yan
, and
H.
Zhang
, “
New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation
,”
Phys. Lett. A
307
,
107
113
(
2003
).
30.
D. S.
Wang
,
L.
Xu
, and
Z.
Xuan
, “
The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation
,”
J. Nonlinear Sci.
32
,
3
(
2022
).
31.
Z. H.
Zhang
,
L. G.
Chen
,
R. G.
Zhang
,
L. G.
Yang
, and
Q. S.
Liu
, “
Dynamics of Rossby solitary waves with time-dependent mean flow via Euler eigenvalue model
,”
Appl. Math. Mech.
43
,
1615
1630
(
2022
).
32.
J.
Yan
,
T.
Bo
,
W.
Pan
, and
M.
Li
, “
Bilinear form and soliton interactions for the modified Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics
,”
Nonlinear Dyn.
73
,
1343
1352
(
2013
).
33.
N. N.
Hu
and
S. F.
Deng
, “
The modified Kadomtsev-Petviashvili equation with binary Bell polynomials
,”
J. Appl. Math. Phys.
2
,
587
592
(
2014
).
34.
Y.
Ye
,
L.
Wang
,
Z.
Chang
, and
J.
He
, “
An efficient algorithm of logarithmic transformation to Hirota bilinear form of KdV-type bilinear equation
,”
Appl. Math. Comput.
218
,
2200
2209
(
2011
).
35.
H.
Hornung
, “
Regular and Mach reflection of shock waves
,”
Annu. Rev. Fluid Mech.
18
,
33
58
(
1986
).
36.
Y.
Harry
,
W. W.
Li
, and
Y.
Kodama
, “
Mach reflection and KP solitons in shallow water
,”
Eur. Phys. J.
185
,
97
111
(
2010
).
37.
C. S.
Morawetz
, “
Potential theory for regular and Mach reflection of a shock at a wedge
,”
Commun. Pure Appl. Math.
47
,
593
624
(
1994
).
You do not currently have access to this content.