Direct-contact condensation of vapor bubbles injected into a subcooled liquid is enhanced using ultrasonic O(1 MHz) acoustic actuation. In the absence of actuation, the surface tension-driven pinch-off process of the vapor bubble from the injection orifice induces a liquid spear that travels upward through the bubble and ruptures the top interface to form a toroidal bubble. Similarly, the acoustic actuator produces a narrow high-intensity acoustic beam that deforms the top interface of the vapor bubble via radiation pressure to form a liquid spear that travels downward though the bubble and ruptures the bottom interface to form a toroidal bubble. Comparisons between the growth and collapse of vapor bubbles in these two cases were performed using high-speed video imaging and particle image velocimetry. The results show that the actuated bubble collapsed about 35% faster than the unactuated bubble. The flow fields around the bubbles induced by the motion of the liquid spears are similar in both cases. By comparing vapor bubbles under different subcooling conditions with an unactuated, noncondensing air bubble, it was shown that condensation at the liquid–vapor interface strongly influences bubble collapse times and the velocity field surrounding each of the bubbles and that these effects increase as the level of subcooling increases.

1.
Abe
,
Y.
,
Kawaji
,
M.
, and
Watanabe
,
T.
, “
Study on the bubble motion control by ultrasonic wave
,”
Exp. Therm. Fluid Sci.
26
,
817
826
(
2002
).
2.
Al Issa
,
S.
,
Weisensee
,
P.
, and
Macian-Juan
,
R.
, “
Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric pressure and different flow conditions
,”
Int. J. Heat Mass Transfer
70
,
918
929
(
2014
).
3.
Barreras
,
F.
,
Amaveda
,
H.
, and
Lozano
,
S.
, “
Transient high-frequency ultrasonic water atomization
,”
Exp. Fluids
33
,
405
413
(
2002
).
4.
Bjerknes
,
V.
,
Fields of Force
(
Columbia University Press
,
New York
,
1906
).
5.
Boziuk
,
T. R.
,
Smith
,
M. K.
, and
Glezer
,
A.
, “
Acoustic enhancement of direct-contact condensation using capillary waves
,”
Int. J. Heat Mass Transfer
138
,
357
372
(
2019
).
6.
Bunkin
,
F. V.
,
Kravtsov
,
Y. A.
, and
Lyakhov
,
G. A.
, “
Acoustic analogues of nonlinear-optics phenomena
,”
Sov. Phys. Usp.
29
,
607
619
(
1986
).
7.
Cheeke
,
J. D. N.
,
Fundamentals and Applications of Ultrasonic Waves
(
CRC Press
,
Boca Raton
,
2002
).
8.
Cho
,
S. C.
and
Lee
,
W. K.
, “
Steam bubble formation at a submerged orifice in quiescent water
,”
Chem. Eng. Sci.
46
(
3
),
789
795
(
1991
).
9.
Dahikar
,
S. K.
,
Sathe
,
M. J.
, and
Joshi
,
J. B.
, “
Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF, and CFD
,”
Chem. Eng. Sci.
65
,
4606
4620
(
2010
).
10.
de With
,
A. P.
,
Calay
,
R. K.
, and
de With
,
G.
, “
Three-dimensional condensation regime diagram for direct contact condensation of steam injected into water
,”
Int. J. Heat Mass Transfer
50
(
9
),
1762
1770
(
2007
).
11.
Dehbani
,
M.
,
Rahimi
,
M.
, and
Rahimi
,
Z.
, “
A review on convective heat transfer enhancement using ultrasound
,”
Appl. Therm. Eng.
208
,
118273
(
2022
).
12.
Eames
,
I.
, “
Momentum conservation and condensing vapor bubbles
,”
J. Heat Transfer
132
,
091501
(
2010
).
13.
Eller
,
A. I.
and
Crum
,
L. A.
, “
Instability of the motion of a pulsating bubble in a sound field
,”
J. Acoust. Soc. Am.
47
(
3
),
762
767
(
1970
).
14.
Faraday
,
M.
, “
On the forms and states assumed by fluids in contact with vibrating elastic surfaces
,”
Philos. Trans. R. Soc. London
121
,
299
340
(
1831
).
15.
Florschuetz
,
L. W.
and
Chao
,
B. T.
, “
On the mechanics of vapor bubble collapse
,”
J. Heat Transfer
87
,
209
220
(
1965
).
16.
Hopfinger
,
E. J.
and
Das
,
S. P.
, “
Mass transfer enhancement by capillary waves at a liquid–vapour interface
,”
Exp. Fluids
46
(
4
),
597
605
(
2009
).
17.
Isenberg
,
J.
and
Sideman
,
S.
, “
Direct contact heat transfer with change of phase: Bubble condensation in immiscible liquids
,”
Int. J. Heat Mass Transfer
13
(
6
),
997
1011
(
1970
).
18.
Kalman
,
H.
and
Mori
,
Y. H.
, “
Experimental analysis of a single vapor bubble condensing in subcooled liquid
,”
Chem. Eng. J.
85
,
197
206
(
2002
).
19.
Kamei
,
S.
and
Hirata
,
M.
, “
High speed photographic study on the condensation of vapor bubbles in the subcooled liquid
,” in
International Congress on High Speed Photography
,
1976
, Vol.
97
.
20.
Kamei
,
S.
and
Hirata
,
M.
, “
Condensing phenomena of a single vapor bubble into subcooled Water
,”
Exp. Heat Transfer
3
,
173
182
(
1990
).
21.
Kar
,
S.
,
Chen
,
X. D.
, and
Nelson
,
M. I.
, “
Direct-contact heat transfer coefficient for condensing vapour bubble in stagnant liquid pool
,”
Chem. Eng. Res. Des.
85
(
3
),
320
328
(
2007
).
22.
Kelvin
,
L.
, “
Hydrokinetic solutions and observations
,”
Philos. Mag.
4
(
42
),
362
377
(
1871
).
23.
Kim
,
S. J.
and
Park
,
G. C.
, “
Interfacial heat transfer of condensing bubble in subcooled boiling flow at low pressure
,”
Int. J. Heat Mass Transfer
54
(
13–14
),
2962
2974
(
2011
).
24.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
Fundamentals of Acoustics
, 4th ed. (
John Wiley and Sons, Inc
.,
New York
,
2000
).
25.
Krasil'nikov
,
V. A.
,
Sound and Ultrasound Waves
, 3rd ed. (
Israel Program for Scientific Translations Ltd
.,
Jerusalem, Israel
,
1963
).
26.
Lang
,
R. J.
, “
Ultrasonic atomization of liquids
,”
J. Acoust. Soc. Am.
34
(
1
),
6
8
(
1962
).
27.
Leighton
,
T. G.
,
The Acoustic Bubble
(
Academic
,
San Diego
,
CA
,
1994
).
28.
Liu
,
H.
,
Tang
,
J.
,
Sun
,
L.
,
Mo
,
Z.
, and
Xie
,
G.
, “
An assessment and analysis of phase change models for the simulation of vapor bubble condensation
,”
Int. J. Heat Mass Transfer
157
,
119924
(
2020
).
29.
Maksimov
,
A. O.
and
Leighton
,
T. G.
, “
Pattern formation on the surface of a bubble driven by an acoustic field
,”
Proc. R Soc. A
468
(
2137
),
57
75
(
2012
).
30.
Nogueira
,
J.
,
Lecuona
,
A.
, and
Rodriguez
,
P. A.
, “
Data validation, false vectors correction and derived magnitudes calculations on PIV data
,”
Meas. Sci. Technol.
8
(
12
),
1493
1501
(
1997
).
31.
Prosperetti
,
A.
, “
Vapor bubbles
,”
Annu. Rev. Fluid Mech.
49
(
1
),
221
248
(
2017
).
32.
Qu
,
X. H.
,
Tian
,
M. C.
,
Zhang
,
G. M.
, and
Leng
,
X. L.
, “
Experimental and numerical investigations on the air-steam mixture bubble condensation characteristics in stagnant cool water
,”
Nucl. Eng. Des.
285
,
188
196
(
2015
).
33.
Rayleigh
,
L.
, “
On the crispations of fluid resting upon a vibrating surface
,”
Philos. Mag.
5
(
16
),
50
58
(
1883
).
34.
Schmidt
,
H.
, “
Bubble formation and heat transfer during dispersion of superheated steam in saturated water I
,”
Int. J. Heat Mass Transfer
20
,
635
646
(
1977
).
35.
Sideman
,
S.
and
Moalem-Maron
,
D.
, “
Direct contact condensation
,”
Adv. Heat Transfer
15
,
227
281
(
1982
).
36.
Simon
,
J. C.
,
Sapozhnikov
,
O. A.
,
Khokhlova
,
V. A.
,
Crum
,
L. A.
, and
Bailey
,
M. R.
, “
Ultrasonic atomization of liquids in drop-chain acoustic fountains
,”
J. Fluid Mech.
766
,
129
146
(
2015
).
37.
Tang
,
J.
,
Yan
,
C.
, and
Sun
,
L.
, “
Effects of noncondensable gas and ultrasonic vibration on vapor bubble condensing and collapsing
,”
Exp. Therm. Fluid Sci.
61
,
210
220
(
2015
).
38.
Tang
,
J.
,
Sun
,
L.
,
Liu
,
H.
,
Liu
,
H.
, and
Mo
,
Z.
, “
Review on direct contact condensation of vapor bubbles in a subcooled liquid
,”
Exp. Comput. Multiphase Flow
4
,
91
112
(
2022
).
39.
Tang
,
J.
,
Yan
,
C.
, and
Sun
,
L.
, “
Enhanced vapor bubble condensation and collapse with ultrasonic vibration
,”
Exp. Therm. Fluid Sci.
70
,
115
124
(
2016
).
40.
Terasaka
,
K.
,
Sun
,
W.-Y.
,
Prakoso
,
T.
, and
Tsuge
,
H.
, “
Measurement of heat transfer coefficient for direct-contact condensation during bubble growth in liquid
,”
J. Chem. Eng. Jpn.
32
(
5
),
594
599
(
1999
).
41.
Tian
,
W. X.
,
Chen
,
R. H.
,
Zuo
,
J. L.
,
Qiu
,
S. Z.
,
Su
,
G. H.
,
Ishiwatari
,
Y.
, and
Oka
,
Y.
, “
Numerical simulation on collapse of vapor bubble using particle method
,”
Heat Transfer Eng.
35
(
6–8
),
753
763
(
2014
).
42.
Tomita
,
Y.
, “
Jet atomization and cavitation induced by interactions between focused ultrasound and a water surface
,”
Phys. Fluids
26
,
097105
(
2014
).
43.
Torr
,
G. R.
, “
The acoustic radiation force
,”
Am. J. Phys.
52
(
5
),
402
408
(
1984
).
44.
Trinh
,
E. H.
,
Thiessen
,
D. B.
, and
Holt
,
R. G.
, “
Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: Experimental result
,”
J. Fluid Mech.
364
,
253
272
(
1998
).
45.
Ueno
,
I.
,
Hattori
,
Y.
, and
Hosoya
,
R.
, “
Condensation and collapse of vapor bubbles injected in subcooled pool
,”
Microgravity Sci. Technol.
23
,
73
77
(
2011
).
46.
Westerweel
,
J.
and
Scarano
,
F.
, “
Universal outlier detection for PIV data
,”
Exp. Fluids
39
(
6
),
1096
1100
(
2005
).
47.
Yang
,
S. R.
,
Seo
,
J.
, and
Hassan
,
Y. A.
, “
Thermal hydraulic characteristics of unstable bubbling of direct contact condensation of steam in subcooled water
,”
Int. J. Heat Mass Transfer
138
,
580
596
(
2019
).
48.
Zhao
,
Q.
and
Hibiki
,
T.
, “
Review: Condensation regime maps of steam submerged jet condensation
,”
Prog. Nucl. Energy
107
,
31
47
(
2018
).
You do not currently have access to this content.