In this work, the detonation wave structure and detonation parameters of mixtures of gelled nitromethane (NM) with hollow glass microballoons (GMBs) are investigated with a laser velocimetry technique. It is shown that the addition from 0.5 to 13 wt. % GMB with the mean diameter of 70 μm does not qualitatively change the reaction zone structure of gelled NM, and it corresponds to the Zeldovich–von Neumann–Döring theory, predicting the formation of the von Neumann spike. The detonation parameters of the explosive mixture monotonically decrease—in particular, the ideal detonation velocity drops from 6.3 km/s for gelled NM to 3.7 km/s for its mixture with 13 wt. % GMB. The addition of GMB leads to a significant reduction in the critical detonation diameter, which decreases from 16.5 mm in gelled NM to 3.5 mm in the mixture with 8 wt. % GMB. The influence of polymethylmethacrylate concentration in the mixture of gelled NM with GMB on the value of critical diameter of the mixture is observed.

1.
A. W.
Campbell
,
W. C.
Davis
, and
J. R.
Travis
, “
Shock initiation of detonation in liquid explosives
,”
Phys. Fluids
4
,
498
(
1961
).
2.
A. W.
Campbell
,
M. E.
Malin
, and
T. E.
Holland
, “
Temperature effects in the liquid explosive, nitromethane
,”
J. Appl. Phys.
27
,
963
963
(
1956
).
3.
A. N.
Dremin
,
O. K.
Rozanov
, and
V. S.
Trofimov
, “
On the detonation of nitromethane
,”
Combust. Flame
7
,
153
162
(
1963
).
4.
J.
Loiseau
,
W.
Georges
,
D. L.
Frost
, and
A. J.
Higgins
, “
The propulsive capability of explosives heavily loaded with inert materials
,”
Shock Waves
28
,
709
741
(
2018
).
5.
D.
Guo
,
S. V.
Zybin
,
W. A.
Goddard
 III
, and
Q.
An
, “
Enhancing the detonation properties of liquid nitromethane by adding nitro-rich molecule nitryl cyanide
,”
J. Phys. Chem. C
124
,
9787
9794
(
2020
).
6.
B.
Štimac
,
H. Y. S.
Chan
,
M.
Kunzel
, and
M.
Suceska
, “
Numerical modelling of detonation reaction zone of nitromethane by EXPLO5 code and Wood and Kirkwood theory
,”
Cent. Eur. J. Energy Mater.
17
,
239
261
(
2020
).
7.
I. M.
Voskoboinikov
,
V. M.
Bogomolov
, and
A. Y.
Apin
, “
Calculation of the initiation pressure of shock-initiated homogeneous explosives
,”
Combust., Explos. Shock Waves
4
,
26
28
(
1968
).
8.
A. V.
Utkin
,
V. M.
Mochalova
, and
V. A.
Garanin
, “
Structure of detonation waves in nitromethane and a nitromethane/methanol mixture
,”
Combust., Explos. Shock Waves
48
,
350
355
(
2012
).
9.
R.
Engelke
,
S. A.
Sheffield
, and
H. L.
Stacy
, “
Chemical-reaction-zone lengths in condensed-phase explosives
,”
Phys. Fluids
16
,
4143
4149
(
2004
).
10.
V.
Bouyer
 et al., “
Experimental measurements of the chemical reaction zone of detonating liquid explosives
,”
AIP Conf. Proc.
1195
,
177
180
(
2009
).
11.
S. F.
Sheffield
 et al., “
Homogeneous shock initiation process in neat and chemically sensitized nitromethane
,” in
13th International Detonation Symposium-2006
(
Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory
,
Norfolk, Virginia
,
2006
), pp.
401
407
.
12.
Y. A.
Gruzdkov
and
Y. M.
Gupta
, “
Mechanism of amine sensitization in shocked nitromethane
,”
J. Phys. Chem. A
102
,
2322
2331
(
1998
).
13.
J. J.
Lee
,
J.
Jiang
,
K. H.
Choong
, and
J. H. S.
Lee
, “
Effect of diethylenetriamine and triethylamine sensitization on the critical diameter of nitromethane
,”
AIP Conf. Proc.
505
,
797
800
(
2000
).
14.
C. P.
Constantinou
,
J. M.
Winey
, and
Y. M.
Gupta
, “
UV/visible absorption spectra of shocked nitromethane and nitromethane-amine mixtures up to a pressure of 14 GPa
,”
J. Phys. Chem.
98
,
7767
7776
(
1994
).
15.
E.
Woods
,
Y.
Dessiaterik
,
R. E.
Miller
, and
T.
Baer
, “
Dynamics in the early stages of decomposition in liquid nitromethane and nitromethane-diethylamine mixtures
,”
J. Phys. Chem. A
105
,
8273
8280
(
2001
).
16.
R.
Engelke
,
S. A.
Sheffield
,
H. L.
Stacy
, and
J. P.
Quintana
, “
Reduction of detonating liquid nitromethane's chemical reaction-zone length by chemical sensitization
,”
Phys. Fluids
17
,
096102
(
2005
).
17.
S.
Zeman
,
T.
Ataiar
,
Z.
Friedl
, and
X.-H.
Ju
, “
Accounts of the new aspects of nitromethane initiation reactivity
,”
Cent. Eur. J. Energy Mater.
6
,
119
133
(
2009
).
18.
V. M.
Mochalova
,
A. V.
Utkin
, and
S. M.
Lapin
, “
Effect of small additions of diethylenetriamine on the width of the reaction zone in detonation waves in nitromethane
,”
Combust., Explos. Shock Waves
52
,
329
334
(
2016
).
19.
E.
Bouton
,
B. A.
Khasainov
,
H. N.
Presles
,
P.
Vidal
, and
B. S.
Ermolaev
, “
Sensitization of two-dimensional detonations in nitromethane by glass microballoons
,”
Shock Waves
9
,
141
147
(
1999
).
20.
J. J.
Lee
,
D. L.
Frost
,
J. H. S.
Lee
, and
A.
Dremin
, “
Propagation of nitromethane detonations in porous media
,”
Shock Waves
5
,
115
119
(
1995
).
21.
D. M.
Dattelbaum
 et al., “
Influence of hot spot features on the initiation characteristics of heterogeneous nitromethane
,” in
Proceedings of the 14th International Detonation Symposium, Coeur D'Alene
(
Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory
,
2010
), pp.
611
621
.
22.
R.
Engelke
, “
Effect of a physical inhomogeneity on steady-state detonation velocity
,”
Phys. Fluids
22
,
1623
1630
(
1979
).
23.
H. N.
Presles
,
P.
Vidal
,
J. C.
Gois
,
B. A.
Khasainov
, and
B. S.
Ermolaev
, “
Influence of glass microballoons size on the detonation of nitromethane based mixtures
,”
Shock Waves
4
,
325
329
(
1995
).
24.
J. C.
Gois
,
J.
Campos
, and
R.
Mendes
, “
On extinction detonation behavior of NM-PMMA-GMB mixtures
,” in
Proceedings of the Conference of the American Physical Society on Shock Compression of Condensed Matter, Seattle, Washington
(
APS
,
1995
), Vol.
2
, pp.
827
830
.
25.
J. C.
Gois
,
J.
Campos
,
I.
Plaksin
, and
R.
Mendes
, “
Failure and re-initiation detonation phenomena in NM/PMMA-GMB mixtures
,”
AIP Conf. Proc.
429
,
691
694
(
1998
).
26.
A.
Higgins
,
J.
Loiseau
, and
X. C.
Mi
, “
Detonation velocity/diameter relation in gelled explosive with inert inclusions
,”
AIP Conf. Proc.
1979
,
100019
(
2018
).
27.
J. L.
Sabourin
 et al., “
Effect of nano-aluminum and fumed silica particles on deflagration and detonation of nitromethane
,”
Propellants, Explos., Pyrotech.
34
,
385
393
(
2009
).
28.
J.
Loiseau
,
W.
Georges
,
D. L.
Frost
, and
A. J.
Higgins
, “
Scaling of the propulsive capability of aluminized gelled nitromethane
,”
AIP Conf. Proc.
1979
,
150026
(
2018
).
29.
B. N.
Kondrikov
,
G. D.
Kozak
,
V. B.
Oblomskii
, and
A. V.
Savkin
, “
Detonation transformations in an aerated liquid
,”
Combust. Explos. Shock Waves
23
,
195
(
1987
).
30.
A. N.
Dremin
,
S. D.
Savrov
,
V. S.
Trofimov
, and
K. K.
Shvedov
,
Detonation Waves in Condensed Media
(
Nauka
,
1970
).
31.
L. M.
Barker
and
R. E.
Hollenbach
, “
Laser interferometer for measuring high velocities of any reflecting surface
,”
J. Appl. Phys.
43
,
4669
4675
(
1972
).
32.
V.
Mochalova
 et al., “
Reaction zone structure and detonation parameters of nitromethane/polymethylmethacrylate and its mixture with microballoons
,”
Phys. Fluids
33
,
046108
(
2021
).
33.
Y. B.
Zel'dovich
, “
K voprosu ob energeticheskom is-pol'zovanii detonatsionnogo goreniya (On the issue of energy development fission of detonation combustion)
,”
J. Tech. Phys.
10
,
14
53
(
1940
).
34.
J.
Von Neumann
, “
Theory of detonation waves
,”
Technical Report No. 549
(
National Defense Research Committee of the Office Scientific Research and Development
, Division B,
1942
).
35.
W.
Döring
, “
Über den detonationsvorgang in gasen
,”
Ann. Phys.
435
,
421
436
(
1943
).
36.
V. M.
Mochalova
,
A. V.
Utkin
,
V. A.
Garanin
, and
S. I.
Torunov
, “
Structure of detonation waves in tetranitromethane and its mixtures with methanol
,”
Combust., Explos. Shock Waves
45
,
320
325
(
2009
).
37.
A. V.
Utkin
,
G. I.
Kanel
, and
V. E.
Fortov
, “
Empirical macrokinetics of the decomposition of a desensitized hexogen in shock and detonation waves
,”
Combust., Explos. Shock Waves
25
,
625
632
(
1989
).
38.
S. A.
Sheffield
 et al., “
Particle velocity measurements of the reaction zone in nitromethane
,” in
Proceedings of the 12th International Detonation Symposium
(
Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory
,
San Diego, California
,
2002
), pp.
159
166
.
39.
S. M.
Karakhanov
,
A. V.
Plastinin
,
D. S.
Bordzilovskii
, and
S. A.
Bordzilovskii
, “
Time of hot-spot formation in shock compression of microballoons in a condensed medium
,”
Combust., Explos. Shock Waves
52
,
350
357
(
2016
).
You do not currently have access to this content.