The main aim of this paper is to analyze the effects of the heave motion of an elastically supported floating oscillating water column device (OWC) on wave energy harvesting efficiency through two-dimensional computational fluid dynamics simulations. After the numerical model is validated using experimental data, it is used to analyze the effect of the natural frequency ratio on the hydrodynamic efficiency of the OWC. The natural frequency ratio is the ratio of the natural frequency to the wave frequency. The numerical results prove that the natural frequency ratio must be greater than 3 for achieving the best hydrodynamic efficiency. The best hydrodynamic efficiency decreases with the decrease in the natural frequency ratio when the latter is 3. If the natural frequency ratio is smaller than 3, both the amplitudes of wave surface elevation and the displacement of the OWC chamber increase but the harvested energy reduces because the relative motion of the wave surface and the OWC device is small. The energy dissipation due to vortices does not have a strong contribution to the reduction of energy at small natural frequencies.

1.
Al-Habaibeh
,
A.
,
Su
,
D.
,
Mccague
,
J.
, and
Knight
,
A.
, “
An innovative approach for energy generation from waves
,”
Energy Convers. Manage.
51
,
1664
1668
(
2010
).
2.
Antonio
,
F. D. O.
, “
Wave energy utilization: A review of the technologies
,”
Renewable Sustainable Energy Rev.
14
,
899
918
(
2010
).
3.
Bahaj
,
A. S.
, “
Generating electricity from the oceans
,”
Renewable Sustainable Energy Rev.
15
,
3399
3416
(
2011
).
4.
Bailey
,
H.
,
Robertson
,
B. R.
, and
Buckham
,
B. J.
, “
Wave-to-wire simulation of a floating oscillating water column wave energy converter
,”
Ocean Eng.
125
,
248
260
(
2016
).
5.
Castro-Santos
,
L.
,
Silva
,
D.
,
Bento
,
A. R.
,
Salvação
,
N.
, and
Guedes Soares
,
C.
, “
Economic feasibility of wave energy farms in Portugal
,”
Energies
11
,
3149
(
2018
).
6.
Deng
,
Z.
,
Wang
,
C.
,
Yao
,
Y.
, and
Higuera
,
P.
, “
Numerical simulation of an oscillating water column device installed over a submerged breakwater
,”
J. Mar. Sci. Technol.
25
,
258
271
(
2020a
).
7.
Deng
,
Z.
,
Wang
,
L.
,
Zhao
,
X.
, and
Wang
,
P.
, “
Wave power extraction by a nearshore oscillating water column converter with a surging lip-wall
,”
Renewable Energy
146
,
662
674
(
2020b
).
8.
Falcão
,
A. D. O.
, “
The shoreline OWC wave power plant at the Azores
,” in
Proceedings of 4th European Wave Energy Conference
(
Danish Technological Institute
,
2000
), pp.
42
47
.
9.
Falcão
,
A. F.
and
Henriques
,
J. C.
, “
Oscillating-water-column wave energy converters and air turbines: A review
,”
Renewable Energy
85
,
1391
1424
(
2016
).
10.
Geng
,
B.
and
Zhao
,
M.
, “
A three-dimensional arbitrary Lagrangian–Eulerian Petrov–Galerkin finite element model for fully nonlinear free-surface waves
,”
Ocean Eng.
91
,
389
398
(
2014
).
11.
Gonçalves
,
R. A. A. C.
,
Teixeira
,
P. R. F.
,
Didier
,
E.
, and
Torres
,
F. R.
, “
Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber
,”
Renewable Energy
153
,
1183
1193
(
2020
).
12.
He
,
F.
and
Huang
,
Z.
, “
Hydrodynamic performance of pile-supported OWC-type structures as breakwaters: n experimental study
,”
Ocean Eng.
88
,
618
626
(
2014
).
13.
He
,
F.
,
Huang
,
Z.
, and
Law
,
A. W.-K.
, “
Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: An experimental study
,”
Ocean Eng.
51
,
16
27
(
2012
).
14.
He
,
F.
,
Huang
,
Z.
, and
Law
,
A. W.-K.
, “
An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction
,”
Appl. Energy
106
,
222
231
(
2013
).
15.
He
,
F.
,
Li
,
M.
, and
Huang
,
Z.
, “
An experimental study of pile-supported OWC-type breakwaters: energy extraction and vortex-induced energy loss
,”
Energies
9
,
540
555
(
2016
).
16.
Heath
,
T.
, “
A review of oscillating water columns
,”
Philos. Trans. R. Soc., A
370
,
235
245
(
2012
).
17.
Heath
,
T.
,
Whittaker
,
T.
, and
Boake
,
C.
, “
The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland) [Land Installed Marine Powered Energy Transformer]
,” in
European wave energy conference, Aalborg, Denmark
, 4–6 Dec 2001 (ETDEWEB, 2001), pp.
49
55
.
18.
Isaacson
,
M.
,
Baldwin
,
J.
, and
Bhat
,
S.
, “
Wave propagation past a pile-restrained floating breakwater
,”
Int. J. Offshore Polar Eng.
8
(
4
),
1
(
1998
).
19.
Iturrioz
,
A.
,
Guanche
,
R.
,
Armesto
,
J.
,
Alves
,
M.
,
Vidal
,
C.
, and
Losada
,
I.
, “
Time-domain modeling of a fixed detached oscillating water column towards a floating multi-chamber device
,”
Ocean Eng.
76
,
65
74
(
2014
).
20.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
, “
A wave generation toolbox for the open‐source CFD library: OpenFoam®
,”
Int. J. Numer. Methods Fluids
70
,
1073
1088
(
2012
).
21.
Josset
,
C.
and
Clément
,
A.
, “
A time-domain numerical simulator for oscillating water column wave power plants
,”
Renewable energy
32
,
1379
1402
(
2007
).
22.
Kamath
,
A.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
, “
Numerical investigations of the hydrodynamics of an oscillating water column device
,”
Ocean Eng.
102
,
40
50
(
2015
).
23.
Larsen
,
B. E.
and
Fuhrman
,
D. R.
, “
On the over-production of turbulence beneath surface waves in Reynolds-averaged Navier–Stokes models
,”
J. Fluid Mech.
853
,
419
460
(
2018
).
24.
Lee
,
K.-R.
,
Koo
,
W.
, and
Kim
,
M.-H.
, “
Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method
,”
Int. J. Naval Archit. Ocean Eng.
5
,
513
528
(
2013
).
25.
Liu
,
C.
, “
A tunable resonant oscillating water column wave energy converter
,”
Ocean Eng.
116
,
82
89
(
2016
).
26.
López
,
I.
,
Carballo
,
R.
, and
Iglesias
,
G.
, “
Site-specific wave energy conversion performance of an oscillating water column device
,”
Energy Convers. Manage.
195
,
457
465
(
2019
).
27.
López
,
I.
,
Carballo
,
R.
, and
Iglesias
,
G.
, “
Intra-annual variability in the performance of an oscillating water column wave energy converter
,”
Energy Convers. Manage.
207
,
112536
(
2020
).
28.
López
,
I.
,
Castro
,
A.
, and
Iglesias
,
G.
, “
Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry
,”
Energy
83
,
89
103
(
2015
).
29.
López
,
I.
,
Pereiras
,
B.
,
Castro
,
F.
, and
Iglesias
,
G.
, “
Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model
,”
Appl. Energy
127
,
105
114
(
2014
).
30.
Luo
,
Y.
,
Nader
,
J.-R.
,
Cooper
,
P.
, and
Zhu
,
S.-P.
, “
Nonlinear 2D analysis of the efficiency of fixed oscillating water column wave energy converters
,”
Renewable Energy
64
,
255
265
(
2014a
).
31.
Luo
,
Y.
,
Wang
,
Z.
,
Peng
,
G.
,
Xiao
,
Y.
,
Zhai
,
L.
,
Liu
,
X.
, and
Zhang
,
Q.
, “
Numerical simulation a heave-only floating OWC (oscillating water column) device
,”
Energy
76
,
799
806
(
2014b
).
32.
Mahnamfar
,
F.
and
Altunkaynak
,
A.
, “
Comparison of numerical and experimental analyses for optimizing the geometry of OWC systems
,”
Ocean Eng.
130
,
10
24
(
2017
).
33.
Masuda
,
Y.
,
Yamazaki
,
T.
,
Outa
,
Y.
, and
Mccormick
,
M.
, “
Study of backward bent duct buoy
,” in OCEANS’87 (
IEEE
,
1987
),
384
389
.
34.
Mia
,
M. R.
,
Zhao
,
M.
,
Wu
,
H.
, and
Munir
,
A.
, “
Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy
,”
Renewable Energy
178
,
1381
1397
(
2021
).
35.
Mia
,
M. R.
,
Zhao
,
M.
,
Wu
,
H.
, and
Munir
,
A.
, “
Numerical investigation of offshore oscillating water column devices
,”
Renewable Energy
191
,
380
393
(
2022
).
36.
Morris-Thomas
,
M. T.
,
Irvin
,
R. J.
, and
Thiagarajan
,
K. P.
, “
An investigation into the hydrodynamic efficiency of an oscillating water column
,”
J. Offshore Mech. Arct. Eng
129
(
4
),
273
278
(
2007
).
37.
Mustapa
,
M. A.
,
Yaakob
,
O.
,
Ahmed
,
Y. M.
,
Rheem
,
C.-K.
,
Koh
,
K.
, and
Adnan
,
F. A.
, “
Wave energy device and breakwater integration: A review
,”
Renewable Sustainable Energy Rev.
77
,
43
58
(
2017
).
38.
Ning
,
D.-Z.
,
Ke
,
S.
,
Mayon
,
R.
, and
Zhang
,
C.
, “
Numerical investigation on hydrodynamic performance of an OWC wave energy device in the stepped bottom
,”
Front. Energy Res.
7
,
152
163
(
2019a
).
39.
Ning
,
D.-Z.
,
Wang
,
R.-Q.
,
Chen
,
L.-F.
, and
Sun
,
K.
, “
Experimental investigation of a land-based dual-chamber OWC wave energy converter
,”
Renewable Sustainable Energy Rev.
105
,
48
60
(
2019b
).
40.
Ning
,
D.-Z.
,
Wang
,
R.-Q.
,
Gou
,
Y.
,
Zhao
,
M.
, and
Teng
,
B.
, “
Numerical and experimental investigation of wave dynamics on a land-fixed OWC device
,”
Energy
115
,
326
337
(
2016a
).
41.
Ning
,
D.-Z.
,
Zhou
,
Y.
,
Mayon
,
R.
, and
Johanning
,
L.
, “
Experimental investigation on the hydrodynamic performance of a cylindrical dual-chamber Oscillating Water Column device
,”
Appl. Energy
260
,
114252
(
2020
).
42.
Ning
,
D.
,
Zhao
,
X.
,
Göteman
,
M.
, and
Kang
,
H.
, “
Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study
,”
Renewable Energy
95
,
531
541
(
2016b
).
43.
Pelc
,
R.
and
Fujita
,
R. M.
, “
Renewable energy from the ocean
,”
Mar. Policy
26
,
471
479
(
2002
).
44.
Rapaka
,
E. V.
,
Natarajan
,
R.
, and
Neelamani
,
S.
, “
Experimental investigation on the dynamic response of a moored wave energy device under regular sea waves
,”
Ocean Eng.
31
,
725
743
(
2004
).
45.
Rezanejad
,
K.
,
Bhattacharjee
,
J.
, and
Soares
,
C. G.
, “
Analytical and numerical study of dual-chamber oscillating water columns on stepped bottom
,”
Renewable Energy
75
,
272
282
(
2015
).
46.
Sheng
,
W.
,
Alcorn
,
R.
, and
Lewis
,
A.
, “
On thermodynamics in the primary power conversion of oscillating water column wave energy converters
,”
J. Renewable Sustainable Energy
5
,
023105
(
2013
).
47.
Sheng
,
W.
,
Flannery
,
B.
,
Lewis
,
A.
, and
Alcorn
,
R.
, “
Experimental studies of a floating cylindrical OWC WEC
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2012
), pp.
169
178
.
48.
Sheng
,
W.
and
Lewis
,
A.
, “
Wave energy conversion of oscillating water column devices including air compressibility
,”
J. Renewable Sustainable Energy
8
,
054501
(
2016
).
49.
Sheng
,
W.
,
Lewis
,
A.
, and
Alcorn
,
R.
, “
Numerical studies on hydrodynamics of a floating oscillating water column
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
ASME
,
2011
), Vol. 44373, pp.
275
282
.
50.
Sheng
,
W.
,
Lewis
,
T.
,
Alcorn
,
R.
,
Johaning
,
L.
, and
Kirrane
,
P.
, “
Experimental investigation of hydrodynamic characteristics of a moored floating WEC
,” in
Proceedings of the 3rd International Conference on Ocean Energy
,
Bilbao, Spain, 6 October 2010
(
ASME
,
2010
), pp.
6
8
.
51.
Silva
,
D.
,
Rusu
,
E.
, and
Soares
,
C. G.
, “
Evaluation of various technologies for wave energy conversion in the Portuguese nearshore
,”
Energies
6
,
1344
1364
(
2013
).
52.
Sphaier
,
S.
,
Torres
,
F.
,
Masetti
,
I.
,
Costa
,
A.
, and
Levi
,
C.
, “
Monocolumn behavior in waves: experimental analysis
,”
Ocean Eng.
34
,
1724
1733
(
2007
).
53.
Teixeira
,
P. R.
and
Didier
,
E.
, “
Numerical analysis of the response of an onshore oscillating water column wave energy converter to random waves
,”
Energy
220
,
119719
(
2021
).
54.
Torres
,
F. R.
,
Teixeira
,
P. R.
, and
Didier
,
E.
, “
Study of the turbine power output of an oscillating water column device by using a hydrodynamic–aerodynamic coupled model
,”
Ocean Eng.
125
,
147
154
(
2016
).
55.
Toyota
,
K.
,
Nagata
,
S.
,
Imai
,
Y.
, and
Setoguchi
,
T.
, “
Research for evaluating performance of OWC-type wave energy converter ‘Backward Bent Duct Buoy
,” in
Proceedings of the 8th European Wave and Tidal Energy Conference
, Uppsala, Sweden, 7 September 2009 (European Tidal and Wave Energy Conference, 2009) pp.
901
913
.
56.
Tsai
,
C.-P.
,
Ko
,
C.-H.
, and
Chen
,
Y.-C.
, “
Investigation on performance of a modified breakwater-integrated OWC wave energy converter
,”
Sustainability
10
,
643
663
(
2018
).
57.
Viviano
,
A.
,
Musumeci
,
R. E.
,
Vicinanza
,
D.
, and
Foti
,
E.
, “
Pressures induced by regular waves on a large scale OWC
,”
Coastal Eng.
152
,
103528
(
2019
).
58.
Viviano
,
A.
,
Naty
,
S.
, and
Foti
,
E.
, “
Scale effects in physical modelling of a generalized OWC
,”
Ocean Eng.
162
,
248
258
(
2018
).
59.
Viviano
,
A.
,
Naty
,
S.
,
Foti
,
E.
,
Bruce
,
T.
,
Allsop
,
W.
, and
Vicinanza
,
D.
, “
Large-scale experiments on the behaviour of a generalised Oscillating Water Column under random waves
,”
Renewable Energy
99
,
875
887
(
2016
).
60.
Vyzikas
,
T.
,
Deshoulières
,
S.
,
Barton
,
M.
,
Giroux
,
O.
,
Greaves
,
D.
, and
Simmonds
,
D.
, “
Experimental investigation of different geometries of fixed oscillating water column devices
,”
Renewable Energy
104
,
248
258
(
2017a
).
61.
Vyzikas
,
T.
,
Deshoulières
,
S.
,
Giroux
,
O.
,
Barton
,
M.
, and
Greaves
,
D.
, “
Numerical study of fixed oscillating water column with RANS-type two-phase CFD model
,”
Renewable Energy
102
,
294
305
(
2017b
).
62.
Wang
,
R.-Q.
and
Ning
,
D.-Z.
, “
Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity
,”
Renewable Energy
150
,
578
588
(
2020
).
63.
Wang
,
R.-Q.
,
Ning
,
D.-Z.
,
Zhang
,
C.-W.
,
Zou
,
Q.-P.
, and
Liu
,
Z. J. C. E.
, “
Nonlinear viscous effects hydrodynamic performance a fixed OWC wave energy converter
,”
Coastal Eng.
131
,
42
50
(
2018
).
64.
Washio
,
Y.
,
Osawa
,
H.
,
Nagata
,
Y.
,
Fujii
,
F.
,
Furuyama
,
H.
, and
Fujita
,
T.
, “
The offshore floating type wave power device ‘Mighty Whale’: Open sea tests
,” in
The Tenth International Offshore and Polar Engineering Conference
(
International Society of Offshore and Polar Engineers
,
2000
).
65.
Zhang
,
C.
and
Ning
,
D.
, “
Hydrodynamic study of a novel breakwater with parabolic openings for wave energy harvest
,”
Ocean Eng.
182
,
540
551
(
2019
).
66.
Zhao
,
M.
,
Cheng
,
L.
, and
Zhou
,
T.
, “
Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length
,”
J. Fluids Struct.
25
,
831
847
(
2009
).
67.
Zhao
,
M.
,
Cheng
,
L.
,
An
,
H.
, and
Lu
,
L.
, “
Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current
,”
J. Fluids Struct.
50
,
292
311
(
2014
).
68.
Zhao
,
M.
,
Teng
,
B.
, and
Tan
,
L.
, “
A finite element solution of wave forces on submerged horizontal circular cylinders
,”
China Ocean Eng.
18
,
335
346
(
2004
); available at https://cir.nii.ac.jp/crid/1571698599231779584#citations_container.
69.
Zheng
,
S.-M.
,
Zhang
,
Y.-H.
,
Zhang
,
Y.-L.
, and
Sheng
,
W.-A.
, “
Numerical study on the dynamics of a two-raft wave energy conversion device
,”
J. Fluids Struct.
58
,
271
290
(
2015
).
You do not currently have access to this content.