The rotating detonation combustor (RDC) has received remarkable attention in the aerospace community. In this work, an experimental RDC model supplied by liquid kerosene and oxygen-enriched air is established. A parametric survey is performed with different injection throats, outlet restrictions, and equivalence ratios to analyze the rotating detonation wave propagation modes comprehensively. Dynamic pressure transducers and a high-speed camera are both employed to identify wave modes synchronously. Overall, the propagation modes are found to be highly dependent on the injection throat and combustor outlet restriction. With a large injection to annulus area ratio of 0.3, a single-wave mode is characterized when no restriction is added at the combustor outlet. Reducing the outlet area leads to a decrease in the wave frequency and a narrower steady rotating detonation propagation regime. The propagation stability of the rotating detonation is strengthened when the injection to annulus area ratio decreases to 0.2. A dual-wave collision mode and a four-wave collision mode are observed, depending on the outlet restriction. A preliminary stable RDC operation range correlated with outlet to injection throat area ratio and equivalence ratio is achieved. Furthermore, an interval value of the outlet to injection throat area ratio is proposed to reach the potential positive total pressure gain. These findings should serve as the reference for RDC configuration design in air-breathing and gas-turbine propulsion systems.

1.
A. H.
Lefebvre
and
D. R.
Ballal
,
Gas Turbine Combustion: Alternative Fuels and Emissions
(
CRC Press
,
Boca Raton
,
2010
).
2.
A. A. V.
Perpignan
,
A.
Gangoli Rao
, and
D. J. E. M.
Roekaerts
, “
Flameless combustion and its potential towards gas turbines
,”
Prog. Energy Combust. Sci.
69
,
28
(
2018
).
3.
Y.
Liu
,
X.
Sun
,
V.
Sethi
,
D.
Nalianda
,
Y.-G.
Li
, and
L.
Wang
, “
Review of modern low emissions combustion technologies for aero gas turbine engines
,”
Prog. Aerosp. Sci.
94
,
12
(
2017
).
4.
K.
Kailasanath
,
Recent Developments in the Research on Pressure-Gain Combustion Devices
(
Springer Nature
,
Singapore
,
2020
).
5.
P.
Stathopoulos
, “
Comprehensive thermodynamic analysis of the Humphrey cycle for gas turbines with pressure gain combustion
,”
Energies
11
,
3521
(
2018
).
6.
P.
Wolański
, “
Detonative propulsion
,”
Proc. Combust. Inst.
34
,
125
(
2013
).
7.
V.
Anand
and
E.
Gutmark
, “
Rotating detonation combustors and their similarities to rocket instabilities
,”
Prog. Energy Combust. Sci.
73
,
182
(
2019
).
8.
F. K.
Lu
and
E. M.
Braun
, “
Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts
,”
J. Propul. Power
30
,
1125
(
2014
).
9.
J. Z.
Ma
,
M.-Y.
Luan
,
Z.-J.
Xia
,
J.-P.
Wang
,
S.-J.
Zhang
,
S.-B.
Yao
, and
B.
Wang
, “
Recent progress, development trends, and consideration of continuous detonation engines
,”
AIAA J.
58
,
4976
(
2020
).
10.
K.
Kailasanath
,
Recent Developments in the Research on Rotating-Detonation-Wave Engines
(
American Institute of Aeronautics and Astronautics
,
Grapevine, TX
,
2017
).
11.
W. A.
Hargus
,
S. A.
Schumaker
, and
E. J.
Paulson
,
Air Force Research Laboratory Rotating Detonation Rocket Engine Development
(
American Institute of Aeronautics and Astronautics
,
Cincinnati, OH
,
2018
).
12.
J.
Sousa
,
G.
Paniagua
, and
E.
Collado Morata
, “
Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor
,”
Appl. Energy
195
,
247
(
2017
).
13.
Z.
Ji
,
H.
Zhang
, and
B.
Wang
, “
Performance analysis of dual-duct rotating detonation aero-turbine engine
,”
Aerosp. Sci. Technol.
92
,
806
(
2019
).
14.
L.
Su
,
F.
Wen
,
S.
Wang
, and
Z.
Wang
, “
Analysis of energy saving and thrust characteristics of rotating detonation turbine engine
,”
Aerosp. Sci. Technol.
124
,
107555
(
2022
).
15.
J.
Koch
and
J. N.
Kutz
, “
Modeling thermodynamic trends of rotating detonation engines
,”
Phys. Fluids
32
,
126102
(
2020
).
16.
J.
Koch
, “
Data-driven surrogates of rotating detonation engine physics with neural ordinary differential equations and high-speed camera footage
,”
Phys. Fluids
33
,
091703
(
2021
).
17.
J.
Braun
,
B. H.
Saracoglu
, and
G.
Paniagua
, “
Unsteady performance of rotating detonation engines with different exhaust nozzles
,”
J. Propul. Power
33
,
121
(
2017
).
18.
Z.
Liu
,
J.
Braun
, and
G.
Paniagua
, “
Characterization of a supersonic turbine downstream of a rotating detonation combustor
,”
J. Eng. Gas Turbines Power
141
,
031501
(
2019
).
19.
M.
Asli
,
P.
Stathopoulos
, and
C. O.
Paschereit
, “
Aerodynamic investigation of guide vane configurations downstream a rotating detonation combustor
,”
J. Eng. Gas Turbines Power
143
,
061011
(
2021
).
20.
K.
Wu
,
S.-J.
Zhang
,
D.-W.
She
, and
J.-P.
Wang
, “
Analysis of flow-field characteristics and pressure gain in air-breathing rotating detonation combustor
,”
Phys. Fluids
33
,
126112
(
2021
).
21.
L.
Su
,
F.
Wen
,
C.
Wan
,
Z.
Li
,
J.
Han
,
S.
Wang
, and
Z.
Wang
, “
Large-eddy simulation study of rotating detonation supersonic turbine nozzle generated by the method of characteristics under oscillating incoming flow
,”
Phys. Fluids
34
,
116119
(
2022
).
22.
P.
Zhang
,
P. A.
Meagher
, and
X.
Zhao
, “
Multiplicity for idealized rotational detonation waves
,”
Phys. Fluids
33
,
106102
(
2021
).
23.
A.
Naples
,
J.
Hoke
,
R.
Battelle
, and
F.
Schauer
, “
T63 turbine response to rotating detonation combustor exhaust flow
,”
J. Eng. Gas Turbines Power
141
,
021029
(
2019
).
24.
P.
Wolański
,
P.
Kalina
,
W.
Balicki
,
A.
Rowiński
,
W.
Perkowski
,
M.
Kawalec
, and
B.
Łukasik
,
Development of Gasturbine With Detonation Chamber
(
Springer International Publishing
,
Cham
,
2018
).
25.
S.
Zhou
,
H.
Ma
,
Y.
Ma
,
C.
Zhou
,
D.
Liu
, and
S.
Li
, “
Experimental study on a rotating detonation combustor with an axial-flow turbine
,”
Acta Astronaut.
151
,
7
(
2018
).
26.
S.
Farokhi
,
Aircraft Propulsion
(
John Wiley & Sons
,
Hoboken, NJ
,
2014
).
27.
Q.
Xie
,
H.
Wen
,
W.
Li
,
Z.
Ji
,
B.
Wang
, and
P.
Wolanski
, “
Analysis of operating diagram for H2/air rotating detonation combustors under lean fuel condition
,”
Energy
151
,
408
(
2018
).
28.
Y.
Wu
,
C.
Weng
,
Q.
Zheng
,
W.
Wei
, and
Q.
Bai
, “
Experimental research on the performance of a rotating detonation combustor with a turbine guide vane
,”
Energy
218
,
119580
(
2021
).
29.
Y.
Zhu
,
K.
Wang
,
M.
Zhao
,
Z.
Wang
, and
W.
Fan
, “
Experimental study on wave propagations in a rotating detonation chamber with different outlet configurations
,”
Acta Astronaut.
200
,
388
(
2022
).
30.
H.
Zhang
,
L.
Jiang
,
W.
Liu
, and
S.
Liu
, “
Characteristic of rotating detonation wave in the H2/air hollow chamber with Laval nozzle
,”
Int. J. Hydrogen Energy
46
,
13389
(
2021
).
31.
Q.
Meng
,
N.
Zhao
, and
H.
Zhang
, “
On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays
,”
Phys. Fluids
33
,
043307
(
2021
).
32.
H.
Wen
,
W.
Wei
,
W.
Fan
,
Q.
Xie
, and
B.
Wang
, “
On the propagation stability of droplet-laden two-phase rotating detonation waves
,”
Combust. Flame
244
,
112271
(
2022
).
33.
M.
Zhao
and
H.
Zhang
, “
Rotating detonative combustion in partially pre-vaporized dilute n-heptane sprays: Droplet size and equivalence ratio effects
,”
Fuel
304
,
121481
(
2021
).
34.
J.
Kindracki
, “
Experimental research on rotating detonation in liquid fuel–gaseous air mixtures
,”
Aerosp. Sci. Technol.
43
,
445
(
2015
).
35.
S.
Xu
,
F.
Song
,
Y.
Wu
,
J.
Zhou
,
P.
Cheng
,
X.
Yang
, and
X.
Chen
, “
Experimental investigation on combustion efficiency of a partially premixed kerosene-air rotating detonation combustor
,”
Fuel
329
,
125418
(
2022
).
36.
J.
Han
,
Q.
Bai
,
S.
Zhang
, and
C.
Weng
, “
Experimental study on propagation mode of rotating detonation wave with cracked kerosene gas and ambient temperature air
,”
Phys. Fluids
34
,
075127
(
2022
).
37.
J.-M.
Li
,
P.-H.
Chang
,
L.
Li
,
Y.
Yang
,
C. J.
Teo
, and
B. C.
Khoo
,
Investigation of Injection Strategy for Liquid-Fuel Rotating Detonation Engine
(
American Institute of Aeronautics and Astronautics
,
Kissimmee, FL
,
2018
).
38.
X.-Y.
Liu
,
M.-Y.
Luan
,
Y.-L.
Chen
, and
J.-P.
Wang
, “
Flow-field analysis and pressure gain estimation of a rotating detonation engine with banded distribution of reactants
,”
Int. J. Hydrogen Energy
45
,
19976
(
2020
).
39.
I. V.
Walters
,
C. L.
Journell
,
A.
Lemcherfi
,
R. M.
Gejji
,
S. D.
Heister
, and
C. D.
Slabaugh
, “
Operability of a natural gas–air rotating detonation engine
,”
J. Propul. Power
36
,
453
(
2020
).
40.
E.
Bach
,
P.
Stathopoulos
,
C. O.
Paschereit
, and
M. D.
Bohon
, “
Performance analysis of a rotating detonation combustor based on stagnation pressure measurements
,”
Combust. Flame
217
,
21
(
2020
).
41.
J.
Zhou
,
F.
Song
,
Y.
Wu
,
S.
Xu
,
X.
Yang
,
P.
Cheng
, and
Y.
Li
, “
Investigation of pressure gain characteristics for kerosene-hot air RDE
,”
Combust. Flame
247
,
112503
(
2023
).
42.
J.
Sun
,
J.
Zhou
,
S.
Liu
,
Z.
Lin
, and
W.
Lin
, “
Effects of air injection throat width on a non-premixed rotating detonation engine
,”
Acta Astronaut.
159
,
189
(
2019
).
43.
Y.
Zhong
,
Y.
Wu
,
D.
Jin
,
X.
Chen
,
X.
Yang
, and
S.
Wang
, “
Effect of channel and oxidizer injection slot width on the rotating detonation fueled by pre-combustion cracked kerosene
,”
Acta Astronaut.
165
,
365
(
2019
).
44.
Y.
Wang
and
J.
Le
, “
A rotating detonation engine using methane-ethylene mixture and air
,”
Acta Astronaut.
188
,
25
(
2021
).
45.
Y.
Zhong
,
Y.
Wu
,
D.
Jin
,
X.
Chen
,
X.
Yang
, and
S.
Wang
, “
Investigation of rotating detonation fueled by the pre-combustion cracked kerosene
,”
Aerosp. Sci. Technol.
95
,
105480
(
2019
).
46.
R.
Bluemner
,
M. D.
Bohon
,
C. O.
Paschereit
, and
E. J.
Gutmark
, “
Effect of inlet and outlet boundary conditions on rotating detonation combustion
,”
Combust. Flame
216
,
300
(
2020
).
47.
I. V.
Walters
,
C.
Journell
,
A. I.
Lemcherfi
,
R.
Gejji
,
S. D.
Heister
, and
C. D.
Slabaugh
,
Performance Characterization of a Natural Gas-Air Rotating Detonation Engine at Elevated Pressure
(
American Institute of Aeronautics and Astronautics
,
2019
).
48.
E.
Bach
,
C. O.
Paschereit
,
P.
Stathopoulos
, and
M.
Bohon
,
RDC Operation and Performance with Varying Air Injector Pressure Loss
(
American Institute of Aeronautics and Astronautics
,
2020
).
49.
S. M.
Frolov
,
V. S.
Aksenov
,
V. S.
Ivanov
, and
I. O.
Shamshin
, “
Large-scale hydrogen–air continuous detonation combustor
,”
Int. J. Hydrogen Energy
40
,
1616
(
2015
).
50.
V.
Anand
,
A. St.
George
,
R.
Driscoll
, and
E.
Gutmark
, “
Experimental investigation of H2-air mixtures in a rotating detonation combustor
,” in
Turbo Expo: Power for Land, Sea, and Air
(
ASME
,
Montréal
,
2015
).
51.
Y.
Zhu
,
K.
Wang
,
Z.
Wang
,
M.
Zhao
,
Z.
Jiao
,
Y.
Wang
, and
W.
Fan
, “
Study on the performance of a rotating detonation chamber with different aerospike nozzles
,”
Aerosp. Sci. Technol.
107
,
106338
(
2020
).
52.
X.
Huang
,
C. J.
Teo
, and
B. C.
Khoo
, “
Wave mode dynamics in an ethylene-air rotating detonation combustor
,”
AIAA J.
59
,
1808
(
2021
).
53.
I. Q.
Andrus
,
M. D.
Polanka
,
P. I.
King
,
F. R.
Schauer
, and
J. L.
Hoke
, “
Experimentation of premixed rotating detonation engine using variable slot feed plenum
,”
J. Propul. Power
33
,
1448
(
2017
).
54.
H.-Y.
Peng
,
W.-D.
Liu
,
S.-J.
Liu
,
H.-L.
Zhang
, and
L.-X.
Jiang
, “
Hydrogen-air, ethylene-air, and methane-air continuous rotating detonation in the hollow chamber
,”
Energy
211
,
118598
(
2020
).
55.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonation of fuel-air mixtures
,”
Combust. Explos. Shock Waves
42
,
463
(
2006
).
56.
P.
Cheng
,
F.
Song
,
S.
Xu
,
J.
Zhou
, and
Y.
Wu
, “
Experimental study on combustion efficiency and gas analysis of RDC with different blockage ratio
,”
Combust. Sci. Technol.
1
,
1
20
(
2022
).
57.
T. A.
Kaemming
and
D. E.
Paxson
,
Determining the Pressure Gain of Pressure Gain Combustion
(
American Institute of Aeronautics and Astronautics
,
2018
).
58.
F.
Wang
and
C.
Weng
, “
Preliminary criterion for positive total pressure gain in kerosene/air rotating detonation combustor
,”
AIAA J.
60
,
6548
(
2022
).
You do not currently have access to this content.