Large-amplitude rain–wind induced vibration (RWIV) is a complex fluid–structure interaction process that may develop if light rainfall and moderate wind act concurrently on long stay cables of a cable-stayed bridge. However, its dynamic characteristics and excitation mechanism are remained an open question. Recently, a theoretical framework for the analysis of RWIV was proposed, based on a quasi-steady-state approximation of the movement of upper rivulet, to reveal the main features of the dynamic process of RWIV. In the present study, we further consider the unsteady and dynamic behaviors of the moving upper rivulet and its coupling effects with the cable movement. The periodic mass, circumferential movement of the upper rivulet was modeled based on experimental observations. The theoretical results are then validated by comparison with experimental results. In addition, some parameters that influence RWIV are investigated in detail. The augmented theory in the present study gives a more accurate model and promotes more reliable evaluations of the dynamic behaviors of RWIV of stay cables.

1.
Bi
,
J. H.
,
Lu
,
P.
,
Wang
,
J.
,
Bao
,
C.
, and
Guan
,
J.
, “
Numerical simulation and analysis of the effects of water-film morphological changes on the aerodynamic lift of stay cables
,”
J. Fluids Struct.
48
,
376
392
(
2014
).
2.
Bi
,
J. H.
,
Wang
,
J.
,
Shao
,
Q.
,
Lu
,
P.
,
Guan
,
J.
, and
Li
,
Q. B.
, “
2D numerical analysis on evolution of water film and cable vibration response subject to wind and rain
,”
J. Wind Eng. Ind. Aerodyn.
121
,
49
59
(
2013
).
3.
Cheng
,
P.
,
Li
,
W. J.
,
Chen
,
W. L.
,
Gao
,
D. L.
,
Xu
,
Y.
, and
Li
,
H.
, “
Computer vision-based recognition of rain water upper rivulet morphology evolution during rain–wind-induced vibration of a 3D aeroelastic stay cable
,”
J. Wind Eng. Ind. Aerodyn.
172
,
367
378
(
2018
).
4.
Cheng
,
P.
,
Li
,
H.
,
Fuster
,
D.
,
Chen
,
W.
, and
Zaleski
,
S.
, “
Multi-scale simulation of rainwater morphology evolution on a cylinder subjected to wind
,”
Comput. Fluids
123
,
112
121
(
2015
).
5.
Cosentino
,
N.
,
Flamand
,
O.
, and
Ceccoli
,
C.
, “
Rain-wind induced vibration of inclined stay cables—Part I: Experimental investigation and physical explanation
,”
Wind Struct.
6
,
471
484
(
2003a
).
6.
Cosentino
,
N.
,
Flamand
,
O.
, and
Ceccoli
,
C.
, “
Rain-wind induced vibration of inclined stay cables—Part II: Mechanical modeling and parameter characterisation
,”
Wind Struct.
6
,
485
498
(
2003b
).
7.
Du
,
X.
,
Gu
,
M.
, and
Chen
,
S.
, “
Aerodynamic characteristics of an inclined and yawed circular cylinder with artificial upper rivulet
,”
J. Fluids Struct.
43
,
64
82
(
2013
).
8.
Flamand
,
O.
, “
Rain-wind induced vibration of cables
,”
J. Wind Eng. Ind. Aerodyn.
57
,
353
362
(
1995
).
9.
Gao
,
D.
,
Chen
,
W.
,
Eloy
,
C.
, and
Li
,
H.
, “
Multi-mode responses, upper rivulet dynamics, flow structures and mechanism of rain-wind induced vibrations of a flexible cable
,”
J. Fluids Struct.
82
,
154
172
(
2018
).
10.
Gao
,
D.
,
Chen
,
W. L.
,
Zhang
,
R. T.
,
Huang
,
Y. W.
, and
Li
,
H.
, “
Multi-modal vortex- and rain–wind-induced vibrations of an inclined flexible cable
,”
Mech. Syst. Signal Process.
118
,
245
258
(
2019
).
11.
Gao
,
D.
,
Li
,
W.
,
Jing
,
H.
,
Wang
,
J.
,
Wu
,
J.
,
Chen
,
W.
, and
Hui
,
L.
, “
Role of dynamic water upper rivulet s in the excitation of rain–wind-induced cable vibration: A critical review
,”
Adv. Struct. Eng.
24
,
3627
3644
(
2021a
).
12.
Gao
,
D.
,
Ning
,
Z.
,
Duan
,
Y.
,
Chen
,
W. L.
, and
Li
,
H.
, “
Theory of rain-wind induced vibration of stay cables: A quasi-steady-state approximation
,”
Phys. Fluids
34
,
095119
(
2022
).
13.
Gao
,
D.
,
Zhang
,
S.
,
Ning
,
Z.
,
Chen
,
W. L.
, and
Li
,
H.
, “
On the coupling mechanism of rain-wind two-phase flow induced cable vibration: A wake-dynamics perspective
,”
Phys. Fluids
33
,
117102
(
2021b
).
14.
Geurts
,
C.
,
Vrouwenvelder
,
T.
,
Van Staalduinen
,
P.
, and
Reusink
,
J.
, “
Numerical modelling of rain-wind-induced vibration: Erasmus bridge, Rotterdam
,”
Struct. Eng. Int. J. Int.
8
,
129
135
(
1998
).
15.
Gu
,
M.
, “
On wind-rain induced vibration of cables of cable-stayed bridges based on quasi-steady assumption
,”
J. Wind Eng. Ind. Aerodyn.
97
,
381
391
(
2009
).
16.
Gu
,
M.
, and
Huang
,
L.
, “
Theoretical and experimental studies on the aerodynamic instability of a two-dimensional circular cylinder with a moving attachment
,”
J. Fluids Struct.
24
,
200
211
(
2008
).
17.
Hikami
,
Y.
, and
Shiraishi
,
N.
, “
Rain-wind induced vibrations of cables stayed bridges
,”
J. Wind Eng. Ind. Aerodyn.
29
,
409
418
(
1988
).
18.
Jing
,
H.
,
He
,
X.
, and
Wang
,
Z.
, “
Numerical modeling of the wind load of a two-dimensional cable model in rain–wind-induced vibration
,”
J. Fluids Struct.
82
,
121
133
(
2018
).
19.
Jing
,
H.
,
Xia
,
Y.
,
Li
,
H.
,
Xu
,
Y.
, and
Li
,
Y.
, “
Excitation mechanism of rain–wind induced cable vibration in a wind tunnel
,”
J. Fluids Struct.
68
,
32
47
(
2017
).
20.
Jing
,
H.
,
Xia
,
Y.
,
Li
,
H.
,
Xu
,
Y.
, and
Li
,
Y.
, “
Study on the role of upper rivulet in rain-wind-induced cable vibration through wind tunnel testing
,”
J. Fluids Struct.
59
,
316
327
(
2015
).
21.
Lemaitre
,
C.
,
Hémon
,
P.
, and
de Langre
,
E.
, “
Thin water film around a cable subject to wind
,”
J. Wind Eng. Ind. Aerodyn.
95
,
1259
1271
(
2007
).
22.
Li
,
F. C.
,
Chen
,
W. L.
,
Li
,
H.
, and
Zhang
,
R.
, “
An ultrasonic transmission thickness measurement system for study of water upper rivulet s characteristics of stay cables suffering from wind-rain-induced vibration
,”
Sens. Actuators, A
159
,
12
23
(
2010a
).
23.
Li
,
S.
,
Chen
,
Z.
,
Sun
,
W.
, and
Li
,
S.
, “
Experimental investigation on quasi-steady and unsteady self-excited aerodynamic forces on cable and upper rivulet
,”
J. Eng. Mech.
142
,
06015004
(
2016
).
24.
Li
,
S.
,
Chen
,
Z.
,
Wu
,
T.
, and
Kareem
,
A.
, “
Rain-wind-induced in-plane and out-of-plane vibrations of stay cables
,”
J. Eng. Mech.
139
,
1688
1698
(
2013
).
25.
Li
,
H.
,
Chen
,
W. L.
,
Xu
,
F.
,
Li
,
F. C.
, and
Ou
,
J. P.
, “
A numerical and experimental hybrid approach for the investigation of aerodynamic forces on stay cables suffering from rain-wind induced vibration
,”
J. Fluids Struct.
26
,
1195
1215
(
2010b
).
26.
Li
,
Y.
,
Jing
,
H.
,
Xia
,
Y.
,
Xu
,
Y.
, and
Xiang
,
H.
, “
Measurement of upper rivulet movement on inclined cables during rain-wind induced vibration
,”
Sens. Actuators, A
230
,
17
24
(
2015
).
27.
Ni
,
Y. Q.
,
Wang
,
X. Y.
,
Chen
,
Z. Q.
, and
Ko
,
J. M.
, “
Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge
,”
J. Wind Eng. Ind. Aerodyn.
95
,
303
328
(
2007
).
28.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
, “
The MATLAB ODE suite
,”
SIAM J. Sci. Comput.
18
,
1
22
(
1997
).
29.
Wang
,
J.
,
Lu
,
P.
,
Bi
,
J. H.
,
Guan
,
J.
, and
Qiao
,
H. Y.
, “
Three-phase coupled modelling research on rain-wind induced vibration of stay cable based on lubrication theory
,”
J. Fluids Struct.
63
,
16
39
(
2016
).
30.
Wu
,
T.
,
Kareem
,
A.
, and
Li
,
S.
, “
On the excitation mechanisms of rain-wind induced vibration of cables: Unsteady and hysteretic nonlinear features
,”
J. Wind Eng. Ind. Aerodyn.
122
,
83
95
(
2013
).
31.
Xu
,
Y. L.
,
Li
,
Y. L.
,
Shum
,
K. M.
,
Kwok
,
K. C. F.
,
Kwok
,
K. C. S.
, and
Hitchcock
,
P. A.
, “
Aerodynamic coefficients of inclined circular cylinders with artificial upper rivulet in smooth flow
,”
Adv. Struct. Eng.
9
,
265
278
(
2006
).
32.
Xu
,
Y. L.
, and
Wang
,
L. Y.
, “
Analytical study of wind–rain-induced cable vibration: SDOF model
,”
J. Wind Eng. Ind. Aerodyn.
91
,
27
40
(
2003
).
33.
Zuo
,
D.
, and
Jones
,
N. P.
, “
Interpretation of field observations of wind– and rain-wind-induced stay cable vibrations
,”
J. Wind Eng. Ind. Aerodyn.
98
,
73
87
(
2010
).
34.
Zuo
,
D.
,
Jones
,
N. P.
, and
Main
,
J. A.
, “
Field observation of vortex- and rain-wind-induced stay-cable vibrations in a three-dimensional environment
,”
J. Wind Eng. Ind. Aerodyn.
96
,
1124
1133
(
2008
).
You do not currently have access to this content.