In this study, two series of pressurized turbulent jet sooting flames at 1, 3, and 5 bar with either fixed jet velocity or fixed Reynolds number are simulated to study the pressure effects on soot formation and evolution. Through a radiation flamelet progress variable approach with a conditional soot subfilter probability density function (PDF) model to consider the turbulence–chemistry–soot interactions, quantitatively good agreements are achieved for soot volume fraction (SVF) predictions compared with the experimental data, regardless different turbulent intensities and residence times. SVF source terms are then discussed to show the pressure effects on nucleation, condensation, surface growth, and oxidation at different axial positions in these flames. It is found that surface growth and oxidation increase by about three orders of magnitude from 1 to 5 bar, while nucleation and condensation only increase within one order of magnitude. The stronger SVF scaling on pressure than measured data is found to be attributed to the inaccurate surface growth and oxidation scaling on pressure. Further analysis indicates that (i) the uncertainty of C2H2 prediction at elevated pressures is likely a major reason for the too strong surface growth scaling; and (ii) taking account of pressure effects in the conditional subfilter PDF modeling for turbulence–soot–chemistry interactions is likely a key to improve oxidation prediction. The results in this study open up the possibilities for improving future turbulent sooting flame modeling by improving C2H2 chemistry and turbulence–chemistry–soot modeling at elevated pressures.

1.
H.
Wang
, “
Formation of nascent soot and other condensed-phase materials in flames
,”
Proc. Combust. Inst.
33
,
41
67
(
2011
).
2.
R. A.
Kerr
, “
Global warming. Soot is warming the world even more than thought
,”
Science
339
,
382
(
2013
).
3.
Y.
Wang
and
S. H.
Chung
, “
Soot formation in laminar counterflow flames
,”
Prog. Energy Combust. Sci.
74
,
152
238
(
2019
).
4.
A. E.
Karataş
and
Ö. L.
Gülder
, “
Soot formation in high pressure laminar diffusion flames
,”
Prog. Energy Combust. Sci.
38
,
818
845
(
2012
).
5.
A.
Mansouri
,
L.
Zimmer
,
S. B.
Dworkin
, and
N. A.
Eaves
, “
Impact of pressure-based HACA rates on soot formation in varying-pressure coflow laminar diffusion flames
,”
Combust. Flame
218
,
109
120
(
2020
).
6.
R. K. A.
Kailasanathan
,
E. K.
Book
,
T.
Fang
, and
W. L.
Roberts
, “
Hydrocarbon species concentrations in nitrogen diluted ethylene-air laminar jet diffusion flames at elevated pressures
,”
Proc. Combust. Inst.
34
,
1035
1043
(
2013
).
7.
J.
Guo
,
Y.
Tang
,
V.
Raman
, and
H. G.
Im
, “
Numerical investigation of pressure effects on soot formation in laminar coflow ethylene/air diffusion flames
,”
Fuel
292
,
120176
(
2021
).
8.
M.
Commodo
,
A. E.
Karataş
,
G.
De Falco
,
P.
Minutolo
,
A.
D'Anna
, and
Ö. L.
Gülder
, “
On the effect of pressure on soot nanostructure: A Raman spectroscopy investigation
,”
Combust. Flame
219
,
13
19
(
2020
).
9.
A. E.
Karataş
and
Ö. L.
Gülder
, “
Effects of carbon dioxide and nitrogen addition on soot processes in laminar diffusion flames of ethylene-air at high pressures
,”
Fuel
200
,
76
80
(
2017
).
10.
N. A.
Eaves
,
A.
Veshkini
,
C.
Riese
,
Q.
Zhang
,
S. B.
Dworkin
, and
M. J.
Thomson
, “
A numerical study of high pressure, laminar, sooting, ethane–air coflow diffusion flames
,”
Combust. Flame
159
,
3179
3190
(
2012
).
11.
N. A.
Eaves
,
M. J.
Thomson
, and
S. B.
Dworkin
, “
The effect of conjugate heat transfer on soot formation modeling at elevated pressures
,”
Combust. Sci. Technol.
185
,
1799
1819
(
2013
).
12.
S. A.
Steinmetz
,
T.
Fang
, and
W. L.
Roberts
, “
Soot particle size measurements in ethylene diffusion flames at elevated pressures
,”
Combust. Flame
169
,
85
93
(
2016
).
13.
K. P.
Geigle
,
M.
Köhler
,
W.
O'Loughlin
, and
W.
Meier
, “
Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations
,”
Proc. Combust. Inst.
35
,
3373
3380
(
2015
).
14.
H.
Kwon
,
A.
Jain
,
C. S.
McEnally
,
L. D.
Pfefferle
, and
Y.
Xuan
, “
Numerical investigation of the pressure-dependence of yield sooting indices for n-alkane and aromatic species
,”
Fuel
254
,
115574
(
2019
).
15.
S.
Wu
,
E. K.
Yapp
,
J.
Akroyd
,
S.
Mosbach
,
R.
Xu
,
W.
Yang
, and
M.
Kraft
, “
Extension of moment projection method to the fragmentation process
,”
J. Comput. Phys.
335
,
516
534
(
2017
).
16.
F.
Ferraro
,
S.
Gierth
,
S.
Salenbauch
,
W.
Han
, and
C.
Hasse
, “
Soot particle size distribution reconstruction in a turbulent sooting flame with the split-based extended quadrature method of moments
,”
Phys. Fluids
34
,
075121
(
2022
).
17.
A.
Seltz
,
P.
Domingo
, and
L.
Vervisch
, “
Solving the population balance equation for non-inertial particles dynamics using probability density function and neural networks: Application to a sooting flame
,”
Phys. Fluids
33
,
013311
(
2021
).
18.
S.
Yang
and
M. E.
Mueller
, “
A multi-moment sectional method (MMSM) for tracking the soot number density function
,”
Proc. Combust. Inst.
37
,
1041
1048
(
2019
).
19.
R. K. A.
Kailasanathan
,
T. L.
Yelverton
,
T.
Fang
, and
W. L.
Roberts
, “
Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames
,”
Combust. Flame
160
,
656
670
(
2013
).
20.
M.
Hofmann
,
B.
Kock
,
T.
Dreier
,
H.
Jander
, and
C.
Schulz
, “
Laser-induced incandescence for soot-particle sizing at elevated pressure
,”
Appl. Phys. B
90
,
629
639
(
2008
).
21.
M.
Tsurikov
,
K. P.
Geigle
,
V.
Krüger
,
Y.
Schneider-Kühnle
,
W.
Stricker
,
R.
Lückerath
,
R.
Hadef
, and
M.
Aigner
, “
Laser-based investigation of soot formation in laminar premixed flames at atmospheric and elevated pressures
,”
Combust. Sci. Technol.
177
,
1835
1862
(
2005
).
22.
D.
Zhou
and
S.
Yang
, “
Soot-based global pathway analysis: Soot formation and evolution at elevated pressures in co-flow diffusion flames
,”
Combust. Flame
227
,
255
270
(
2021
).
23.
F.
Tabet
,
B.
Sarh
, and
I.
Gökalp
, “
Turbulent non-premixed hydrogen-air flame structure in the pressure range of 1–10 atm
,”
Int. J. Hydrogen Energy
36
,
15838
15850
(
2011
).
24.
S.
Hong
,
W.
Lee
,
S.
Kang
, and
H. H.
Song
, “
Analysis of turbulent diffusion flames with a hybrid fuel of methane and hydrogen in high pressure and temperature conditions using les approach
,”
Int. J. Hydrogen Energy
40
,
12034
12046
(
2015
).
25.
Y.
Xuan
and
G.
Blanquart
, “
Effects of aromatic chemistry-turbulence interactions on soot formation in a turbulent non-premixed flame
,”
Proc. Combust. Inst.
35
,
1911
1919
(
2015
).
26.
F.
Bisetti
,
G.
Blanquart
,
M. E.
Mueller
, and
H.
Pitsch
, “
On the formation and early evolution of soot in turbulent nonpremixed flames
,”
Combust. Flame
159
,
317
335
(
2012
).
27.
A.
Attili
,
F.
Bisetti
,
M. E.
Mueller
, and
H.
Pitsch
, “
Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame
,”
Combust. Flame
161
,
1849
1865
(
2014
).
28.
A.
Attili
,
F.
Bisetti
,
M. E.
Mueller
, and
H.
Pitsch
, “
Damköhler number effects on soot formation and growth in turbulent nonpremixed flames
,”
Proc. Combust. Inst.
35
,
1215
1223
(
2015
).
29.
M.
Lucchesi
,
A.
Abdelgadir
,
A.
Attili
, and
F.
Bisetti
, “
Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame
,”
Combust. Flame
178
,
35
45
(
2017
).
30.
M. E.
Mueller
and
H.
Pitsch
, “
Large eddy simulation subfilter modeling of soot-turbulence interactions
,”
Phys. Fluids
23
,
115104
(
2011
).
31.
S.
Yang
,
J. K.
Lew
, and
M. E.
Mueller
, “
Large eddy simulation of soot evolution in turbulent reacting flows: Presumed subfilter pdf model for soot–turbulence–chemistry interactions
,”
Combust. Flame
209
,
200
213
(
2019
).
32.
S.
Yang
,
J. K.
Lew
, and
M. E.
Mueller
, “
Large eddy simulation of soot evolution in turbulent reacting flows: Strain-sensitive transport approach for polycyclic aromatic hydrocarbons
,”
Combust. Flame
220
,
219
234
(
2020
).
33.
S.
Brookes
and
J.
Moss
, “
Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames of methane
,”
Combust. Flame
116
,
49
61
(
1999
).
34.
O. V.
Roditcheva
and
X. S.
Bai
, “
Pressure effect on soot formation in turbulent diffusion flames
,”
Chemosphere
42
,
811
821
(
2001
).
35.
S. T.
Chong
,
M.
Hassanaly
,
H.
Koo
,
M. E.
Mueller
,
V.
Raman
, and
K.-P.
Geigle
, “
Large eddy simulation of pressure and dilution-jet effects on soot formation in a model aircraft swirl combustor
,”
Combust. Flame
192
,
452
472
(
2018
).
36.
W. R.
Boyette
,
A. M.
Elbaz
,
T. F.
Guiberti
, and
W. L.
Roberts
, “
Experimental investigation of the near field in sooting turbulent nonpremixed flames at elevated pressures
,”
Exp. Therm. Fluid Sci.
105
,
332
341
(
2019
).
37.
W. R.
Boyette
,
A. M.
Bennett
,
E.
Cenker
,
T. F.
Guiberti
, and
W. L.
Roberts
, “
Effects of pressure on soot production in piloted turbulent non-premixed jet flames
,”
Combust. Flame
227
,
271
282
(
2021
).
38.
L.
Tian
,
W.
Boyette
,
R.
Lindstedt
,
T.
Guiberti
, and
W. L.
Roberts
, “
Transported JPDF modelling and measurements of soot at elevated pressures
,”
Proc. Combust. Inst.
(published online 2022).
39.
D.
Proud
,
M.
Evans
,
Q.
Chan
, and
P.
Medwell
, “
Characteristics of turbulent flames in a confined and pressurised jet-in-hot-coflow combustor
,”
J. Energy Inst.
105
,
103
113
(
2022
).
40.
M.
Yen
,
V.
Magi
, and
J.
Abraham
, “
Modeling soot formation in turbulent jet flames at atmospheric and high-pressure conditions
,”
Energy Fuels
32
,
8857
8867
(
2018
).
41.
C.
Meneveau
,
T. S.
Lund
, and
W. H.
Cabot
, “
A Lagrangian dynamic subgrid-scale model of turbulence
,”
J. Fluid Mech.
319
,
353
385
(
1996
).
42.
M.
Ihme
and
H.
Pitsch
, “
Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation
,”
Phys. Fluids
20
,
055110
(
2008
).
43.
M. E.
Mueller
and
H.
Pitsch
, “
LES model for sooting turbulent nonpremixed flames
,”
Combust. Flame
159
,
2166
2180
(
2012
).
44.
R. S.
Barlow
,
A. N.
Karpetis
,
J. H.
Frank
, and
J.-Y.
Chen
, “
Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames
,”
Combust. Flame
127
,
2102
2118
(
2001
).
45.
Y.
Wang
,
A.
Raj
, and
S. H.
Chung
, “
A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames
,”
Combust. Flame
160
,
1667
1676
(
2013
).
46.
M. E.
Mueller
,
G.
Blanquart
, and
H.
Pitsch
, “
Hybrid method of moments for modeling soot formation and growth
,”
Combust. Flame
156
,
1143
1155
(
2009
).
47.
O.
Desjardins
,
G.
Blanquart
,
G.
Balarac
, and
H.
Pitsch
, “
High order conservative finite difference scheme for variable density low Mach number turbulent flows
,”
J. Comput Phys.
227
,
7125
7159
(
2008
).
48.
H.
Pitsch
, “
FlameMaster: A C++ computer program for 0D combustion and 1D laminar flame calculations
,” (
1998
); available at https://www.itv.rwth-aachen.de/downloads/flamemaster/.
49.
P. P.
Duvvuri
,
H. M.
Colmán
, and
M. E.
Mueller
, “
Relative influence of soot oxidation kinetics and subfilter soot-turbulence interactions on soot evolution in turbulent nonpremixed flames
,”
Proc. Combust. Inst.
(published online
2022
).
50.
A.
Kazakov
,
H.
Wang
, and
M.
Frenklach
, “
Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar
,”
Combust. Flame
100
,
111
120
(
1995
).
51.
G.
Blanquart
and
H.
Pitsch
, “
A joint volume-surface-hydrogen multi-variate model for soot formation
,” in
Combustion Generated Fine Carbonaceous Particles
(
KIT Scientific Publishing
,
2009
), pp.
437
463
.
52.
C.
Olm
,
I. G.
Zsély
,
R.
Pálvölgyi
,
T.
Varga
,
T.
Nagy
,
H. J.
Curran
, and
T.
Turányi
, “
Comparison of the performance of several recent hydrogen combustion mechanisms
,”
Combust. Flame
161
,
2219
2234
(
2014
).
53.
X.
Shen
,
X.
Yang
,
J.
Santner
,
J.
Sun
, and
Y.
Ju
, “
Experimental and kinetic studies of acetylene flames at elevated pressures
,”
Proc. Combust. Inst.
35
,
721
728
(
2015
).
You do not currently have access to this content.