In this paper, we study the problem of thermosolutal convection in a Navier–Stokes–Voigt fluid when the layer is heated from below and simultaneously salted from above or below. This problem is studied under the effects of Soret and slip boundary conditions. Both linear and nonlinear stability analyses are employed. When the layer is heated from below and salted from above, the boundaries exhibit great concordance, resulting in a very narrow region of probable subcritical instabilities. This proves that linear analysis is reliable enough to forecast the beginning of convective motion. The Chebyshev collocation technique and QZ algorithm have been used to solve systems of linear and nonlinear theories. For thermal convection in a dissolved salt field with a complex viscoelastic fluid of the Navier–Stokes–Voigt type, instability boundaries are computed. When the convection is of the oscillatory type, the Kelvin–Voigt parameter is observed to play a crucial role in functioning as a stabilizing agent. This effect's quantitative size is shown.

1.
F.
Franchi
,
B.
Lazzari
, and
R.
Nibbi
, “
Mathematical models for the non-isothermal Johnson–Segalman viscoelasticity in porous media: Stability and wave propagation
,”
Math. Methods Appl. Sci.
38
(
17
),
4075
4087
(
2015
).
2.
F.
Franchi
,
B.
Lazzari
, and
R.
Nibbi
, “
The J–S model versus a non-ideal MHD theory
,”
Phys. Lett. A
379
(
22–23
),
1431
1436
(
2015
).
3.
S.
Gatti
,
C.
Giorgi
, and
V.
Pata
, “
Navier–Stokes limit of Jeffreys type flows
,”
Physica D
203
(
1–2
),
55
79
(
2005
).
4.
P. M.
Jordan
and
G.
Saccomandi
, “
Compact acoustic travelling waves in a class of fluids with nonlinear material dispersion
,”
Proc. Roy. Soc. A
468
(
2147
),
3441
3457
(
2012
).
5.
P. M.
Jordan
,
R. S.
Keiffer
, and
G.
Saccomandi
, “
Anomalous propagation of acoustic traveling waves in thermoviscous fluids under the Rubin–Rosenau–Gottlieb theory of dispersive media
,”
Wave Motion
51
(
2
),
382
388
(
2014
).
6.
P. M.
Jordan
,
R. S.
Keiffer
, and
G.
Saccomandi
, “
A re-examination of weakly-nonlinear acoustic traveling waves in thermoviscous fluids under Rubin–Rosenau–Gottlieb theory
,”
Wave Motion
76
,
1
8
(
2018
).
7.
L. E.
Payne
and
B.
Straughan
, “
Convergence of the equations for a Maxwell fluid
,”
Stud. Appl. Math.
103
(
3
),
267
278
(
1999
).
8.
M.
Fabrizio
,
B.
Lazzari
, and
R.
Nibbi
, “
Asymptotic stability in linear viscoelasticity with supplies
,”
J. Math. Anal. Appl.
427
(
2
),
629
645
(
2015
).
9.
F.
Franchi
,
B.
Lazzari
, and
R.
Nibbi
, “
Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models
,”
Discrete Contin. Dyn. Syst. B
19
(
7
),
2111
(
2014
).
10.
G.
Amendola
and
M.
Fabrizio
, “
Thermal convection in a simple fluid with fading memory
,”
J. Math. Anal. Appl.
366
(
2
),
444
459
(
2010
).
11.
V.
Anand
,
J.
David
, Jr.
, and
I. C.
Christov
, “
Non-Newtonian fluid–structure interactions: Static response of a microchannel due to internal flow of a power-law fluid
,”
J. Non-Newtonian Fluid Mech.
264
,
62
72
(
2019
).
12.
I. C.
Christov
and
C. I.
Christov
, “
Stress retardation versus stress relaxation in linear viscoelasticity
,”
Mech. Res. Commun.
72
,
59
63
(
2016
).
13.
L. C.
Berselli
and
L.
Bisconti
, “
On the structural stability of the Euler–Voigt and Navier–Stokes–Voigt models
,”
Nonlinear Anal.: Theory Methods Appl.
75
(
1
),
117
130
(
2012
).
14.
W. J.
Layton
and
L. G.
Rebholz
, “
On relaxation times in the Navier-Stokes-Voigt model
,”
Int. J. Comput. Fluid Dyn.
27
(
3
),
184
187
(
2013
).
15.
S.
Chiriţă
and
V.
Zampoli
, “
On the forward and backward in time problems in the Kelvin–Voigt thermoviscoelastic materials
,”
Mech. Res. Commun.
68
,
25
30
(
2015
).
16.
O.
Anatolii Petrovich
, “
Initial-boundary value problems for equations of motion of Kelvin–Voigt fluids and Oldroyd fluids
,”
Tr. Mat. Inst. im. V. A. Steklova
179
,
126
164
(
1988
).
17.
A. P.
Oskolkov
, “
Nonlocal problems for the equations of motion of Kelvin–Voigt fluids
,”
J. Math. Sci.
75
(
6
),
2058
2078
(
1995
).
18.
T. G.
Sukacheva
and
O. P.
Matveeva
, “
On a homogenous thermoconvection model of the non-compressible viscoelastic Kelvin–Voigt fluid of the non-zero order
,”
J. Samara State Tech. Univ., Ser. Phys. Math. Sci.
14
(
2
),
33
41
(
2010
).
19.
O. P.
Matveeva
, “
Model of thermoconvection of incompressible viscoelastic fluid of nonzero order. Computational experiment
,”
Vestn. Yuzhno-Ural'skogo Univ. Seriya Mat. Model. Program
6
(
1
),
134
138
(
2013
).
20.
S.
Rionero
, “
Multicomponent diffusive-convective fluid motions in porous layers: Ultimately boundedness, absence of subcritical instabilities, and global nonlinear stability for any number of salts
,”
Phys. Fluids
25
(
5
),
054104
(
2013
).
21.
Z.-W.
Chen
,
Y.-S.
Li
, and
J.-M.
Zhan
, “
Double-diffusive Marangoni convection in a rectangular cavity: Onset of convection
,”
Phys. Fluids
22
(
3
),
034106
(
2010
).
22.
J.
Carballido-Landeira
,
P. M.
Trevelyan
,
C.
Almarcha
, and
A.
De Wit
, “
Mixed-mode instability of a miscible interface due to coupling between Rayleigh-Taylor and double-diffusive convective modes
,”
Phys. Fluids
25
(
2
),
024107
(
2013
).
23.
A.
Kumar
and
B. S.
Bhadauria
, “
Double diffusive convection in a porous layer saturated with viscoelastic fluid using a thermal non-equilibrium model
,”
Phys. Fluids
23
(
5
),
054101
(
2011
).
24.
A. J.
Harfash
and
F. K.
Nashmi
, “
Triply resonant double diffusive convection in a fluid layer
,”
Math. Modell. Anal.
22
(
6
),
809
826
(
2017
).
25.
A. J.
Harfash
and
H. A.
Challoob
, “
Nonhomogeneous porosity and thermal diffusivity effects on stability and instability of double-diffusive convection in a porous medium layer: Brinkman model
,”
Nonlinear Eng.
8
(
1
),
293
302
(
2019
).
26.
A. J.
Harfash
and
G. A.
Meften
, “
Couple stresses effect on instability and nonlinear stability in a double diffusive convection
,”
Appl. Math. Comput.
341
,
301
320
(
2019
).
27.
A. A.
Hameed
and
A. J.
Harfash
, “
Unconditional nonlinear stability for double-diffusive convection in a porous medium with temperature-dependent viscosity and density
,”
Heat Transfer Asian Res.
48
(
7
),
2948
2973
(
2019
).
28.
A. J.
Harfash
and
A. A.
Hameed
, “
Stability of double-diffusive convection in a porous medium with temperature-dependent viscosity: Brinkman–Forchheimer model
,”
Bull. Malays. Math. Sci. Soc.
44
(
3
),
1275
1307
(
2021
).
29.
H. A.
Challoob
,
A. J.
Harfash
, and
A. J.
Harfash
, “
Bidispersive double diffusive convection with relatively large macropores and generalized boundary conditions
,”
Phys. Fluids
33
(
3
),
034114
(
2021
).
30.
A. J.
Badday
and
A. J.
Harfash
, “
Double-diffusive convection in bidispersive porous medium with chemical reaction and magnetic field effects
,”
Transp. Porous Media
139
(
1
),
45
66
(
2021
).
31.
A. J.
Badday
and
A. J.
Harfash
, “
Thermosolutal convection in a brinkman porous medium with reaction and slip boundary conditions
,”
J. Porous Media
25
(
1
),
15
29
(
2022
).
32.
R.
Piazza
and
A.
Guarino
, “
Soret effect in interacting micellar solutions
,”
Phys. Rev. Lett.
88
(
20
),
208302
(
2002
).
33.
C.
Soret
, “
Concentrations differentes d'une dissolution dont deux parties sont a'des temperatures differentes
,”
Arch. Sci. Phys. Nat.
2
,
48
61
(
1879
).
34.
P. A.
Domenico
, “
Transport phenomena in chemical rate processes in sediments
,”
Annu. Rev. Earth Planet. Sci.
5
,
287
(
1977
).
35.
J. C.
Maxwell
, “
VII. On stresses in rarified gases arising from inequalities of temperature
,”
Philos. Trans. R. Soc. London
170
,
231
256
(
1879
).
36.
E. P.
Muntz
, “
Rarefied gas dynamics
,”
Annu. Rev. Fluid Mech.
21
(
1
),
387
422
(
1989
).
37.
J. D.
Berry
,
I. U.
Vakarelski
,
D. Y.
Chan
, and
S. T.
Thoroddsen
, “
Navier slip model of drag reduction by Leidenfrost vapor layers
,”
Phys. Fluids
29
(
10
),
107104
(
2017
).
38.
S. J.
Bolaños
and
B.
Vernescu
, “
Derivation of the Navier slip and slip length for viscous flows over a rough boundary
,”
Phys. Fluids
29
(
5
),
057103
(
2017
).
39.
D.
Crowdy
, “
Slip length for transverse shear flow over a periodic array of weakly curved menisci
,”
Phys. Fluids
29
(
9
),
091702
(
2017
).
40.
K.
Wang
,
L.
Yang
,
Y.
Yu
, and
G.
Hou
, “
Influence of slip boundary on the hydrofoil with a curved slip boundary condition for the lattice Boltzmann method
,”
Phys. Fluids
30
(
12
),
123601
(
2018
).
41.
L.
Muravleva
, “
Squeeze flow of Bingham plastic with stick-slip at the wall
,”
Phys. Fluids
30
(
3
),
030709
(
2018
).
42.
C.
Chai
and
B.
Song
, “
Stability of slip channel flow revisited
,”
Phys. Fluids
31
(
8
),
084105
(
2019
).
43.
C.
Thomas
,
S. O.
Stephen
, and
C.
Davies
, “
Effects of partial slip on the local-global linear stability of the infinite rotating disk boundary layer
,”
Phys. Fluids
32
(
7
),
074105
(
2020
).
44.
X.
Xiong
and
J.
Tao
, “
Linear stability and energy stability of plane Poiseuille flow with isotropic and anisotropic slip boundary conditions
,”
Phys. Fluids
32
(
9
),
094104
(
2020
).
45.
A. J.
Harfash
and
H. A.
Challoob
, “
Slip boundary conditions and through flow effects on double-diffusive convection in internally heated heterogeneous brinkman porous media
,”
Chin. J. Phys.
56
(
1
),
10
22
(
2018
).
46.
H. A.
Challoob
,
A. J.
Mathkhor
, and
A. J.
Harfash
, “
Slip boundary condition effect on double-diffusive convection in a porous medium: Brinkman model
,”
Heat Transfer Asian Res.
49
(
1
),
258
268
(
2020
).
47.
V. S.
Craig
,
C.
Neto
, and
D. R.
Williams
, “
Shear-dependent boundary slip in an aqueous Newtonian liquid
,”
Phys. Rev. Lett.
87
(
5
),
054504
(
2001
).
48.
C.
Neto
,
V. S. J.
Craig
, and
D. R. M.
Williams
, “
Evidence of shear-dependent boundary slip in Newtonian liquids
,”
Eur. Phys. J. E
12
(
1
),
71
74
(
2003
).
49.
Y.
Zhu
and
S.
Granick
, “
Rate-dependent slip of Newtonian liquid at smooth surfaces
,”
Phys. Rev. Lett.
87
(
9
),
096105
(
2001
).
50.
P. A.
Thompson
and
S. M.
Troian
, “
A general boundary condition for liquid flow at solid surfaces
,”
Nature
389
(
6649
),
360
362
(
1997
).
51.
N.-T.
Nguyen
,
S. T.
Wereley
, and
S. A. M.
Shaegh
,
Fundamentals and Applications of Microfluidics
(
Artech House
,
2019
).
52.
B.
Straughan
, “
Thermosolutal convection with a Navier–Stokes–Voigt fluid
,”
Appl. Math. Optim.
84
(
3
),
2587
2599
(
2021
).
53.
G.
Genç
and
D. A. S.
Rees
, “
The onset of convection in horizontally partitioned porous layers
,”
Phys. Fluids
23
(
6
),
064107
(
2011
).
54.
D. V.
Lyubimov
,
T. P.
Lyubimova
,
N. I.
Lobov
, and
J. I. D.
Alexander
, “
Rayleigh–Bénard–Marangoni convection in a weakly non-Boussinesq fluid layer with a deformable surface
,”
Phys. Fluids
30
(
2
),
024103
(
2018
).
55.
H.
Liu
,
Z.
Zeng
,
L.
Yin
,
Z.
Qiu
, and
L.
Zhang
, “
Effect of the Prandtl number on the instabilities of the thermocapillary flow in an annular pool
,”
Phys. Fluids
31
(
3
),
034103
(
2019
).
56.
B.-Q.
Jia
,
L.
Xie
,
X.
Cui
,
L.-J.
Yang
, and
Q.-F.
Fu
, “
Linear stability of confined coaxial jets in the presence of gas velocity oscillations with heat and mass transfer
,”
Phys. Fluids
31
(
9
),
092101
(
2019
).
57.
A.
Barletta
and
D. A. S.
Rees
, “
On the onset of convection in a highly permeable vertical porous layer with open boundaries
,”
Phys. Fluids
31
(
7
),
074106
(
2019
).
58.
P. G.
Siddheshwar
and
K. M.
Lakshmi
, “
Darcy-Bénard convection of Newtonian liquids and Newtonian nanoliquids in cylindrical enclosures and cylindrical annuli
,”
Phys. Fluids
31
(
8
),
084102
(
2019
).
59.
D. A. S.
Rees
, “
Darcy–Bénard–Bingham convection
,”
Phys. Fluids
32
(
8
),
084107
(
2020
).
60.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Courier Corporation
,
1981
).
61.
D. A.
Nield
,
A.
Bejan
 et al.,
Convection in Porous Media
(
Springer
,
2006
), Vol.
3
.
62.
A. J.
Harfash
, “
Three dimensions simulation for the problem of a layer of non-Boussinesq fluid heated internally with prescribed heat flux on the lower boundary and constant temperature upper surface
,”
Int. J. Eng. Sci.
74
,
91
102
(
2014
).
63.
A. J.
Harfash
and
A. K.
Alshara
, “
On the stationary and oscillatory modes of triply resonant penetrative convection
,”
Int. J. Numer. Methods Heat Fluid Flow
26
(
5
),
1391
1415
(
2016
).
64.
A. J.
Harfash
, “
Stability analysis for penetrative convection in a fluid layer with throughflow
,”
Int. J. Mod. Phys. C
27
(
9
),
1650101
(
2016
).
65.
H. A.
Challoob
,
A. J.
Harfash
, and
A. J.
Harfash
, “
Bidispersive thermal convection with relatively large macropores and generalized velocity and temperature boundary conditions
,”
Phys. Fluids
33
(
1
),
014105
(
2021
).
66.
A. J.
Badday
and
A. J.
Harfash
, “
Chemical reaction effect on convection in bidispersive porous medium
,”
Transp. Porous Media
137
(
2
),
381
397
(
2021
).
67.
K.
Al-Yasiri
,
H. A.
Challoob
,
A. J.
Harfash
, and
A. K.
Alshara
, “
Linear and nonlinear stability analyses of penetrative convection in porous media with a gravity field effect
,”
Partial Differ. Eqs. Appl. Math.
5
,
100368
(
2022
).
68.
A. J.
Badday
and
A. J.
Harfash
, “
Magnetohydrodynamic instability of fluid flow in a porous channel with slip boundary conditions
,”
Appl. Math. Comput.
432
,
127363
(
2022
).
69.
A. J.
Badday
and
A. J.
Harfash
, “
Instability in Poiseuille flow in a porous medium with slip boundary conditions and uniform vertical throughflow effects
,”
J. Eng. Math.
135
(
1
),
1
17
(
2022
).
You do not currently have access to this content.