We develop the rheology of a dilute granular gas mixture. Motivated by the interaction of charged granular particles, we assume that the grains interact via a square shoulder and well potential. Employing a kinetic theory, we compute the temperature and the shear viscosity as a function of the shear rate. Numerical simulations confirm our results are above the critical shear rate. At a shear rate below a critical value, clustering of the particles occurs.
References
1.
L. B.
Schein
, Electrophotography and Development Physics
(Springer Berlin
, Heidelberg
, 2013
), Vol. 14
.2.
T.
Scheffler
and D. E.
Wolf
, “Collision rates in charged granular gases
,” Granular Matter
4
, 103
–113
(2002
).3.
T.
Pöschel
, N. V.
Brilliantov
, and T.
Schwager
, “Long-time behavior of granular gases with impact-velocity dependent coefficient of restitution
,” Physica A
325
, 274
–283
(2003
).4.
S.
Takada
, D.
Serero
, and T.
Pöschel
, “Homogeneous cooling state of dilute granular gases of charged particles
,” Phys. Fluids
29
, 083303
(2017
).5.
S.
Takada
, D.
Serero
, and T.
Pöschel
, “Transport coefficients for granular gases of electrically charged particles
,” J. Fluid Mech.
935
, A38
(2022
).6.
C.
Singh
and M. G.
Mazza
, “Early-stage aggregation in three-dimensional charged granular gas
,” Phys. Rev. E
97
, 022904
(2018
).7.
C.
Singh
and M. G.
Mazza
, “Electrification in granular gases leads to constrained fractal growth
,” Sci. Rep.
9
, 9049
(2019
).8.
P. K.
Haff
, “Grain flow as a fluid-mechanical phenomenon
,” J. Fluid Mech.
134
, 401
–430
(1983
).9.
S.
McNamara
and S.
Luding
, “Energy nonequipartition in systems of inelastic, rough spheres
,” Phys. Rev. E
58
, 2247
–2250
(1998
).10.
V.
Garzó
and J.
Dufty
, “Homogeneous cooling state for a granular mixture
,” Phys. Rev. E
60
, 5706
–5713
(1999
).11.
S. R.
Dahl
, C. M.
Hrenya
, V.
Garzó
, and J. W.
Dufty
, “Kinetic temperatures for a granular mixture
,” Phys. Rev. E
66
, 041301
(2002
).12.
V.
Garzó
, “Tracer diffusion in granular shear flows
,” Phys. Rev. E
66
, 021308
(2002
).13.
J. M.
Montanero
and V.
Garzó
, “Rheological properties in a low-density granular mixture
,” Physica A
310
, 17
–38
(2002
).14.
J. M.
Montanero
and V.
Garzó
, “Energy nonequipartition in a sheared granular mixture
,” Mol. Simul.
29
, 357
–362
(2003
).15.
V.
Garzó
and J. M.
Montanero
, “Effect of energy nonequipartition on the transport properties in a granular mixture
,” Granular Matter
5
, 165
–168
(2003
).16.
N. V.
Brilliantov
and T.
Pöschel
, Kinetic Theory of Granular Gases
(Oxford University Press
, Oxford
, 2004
).17.
M.
Alam
and S.
Luding
, “Energy nonequipartition, rheology, and microstructure in sheared bidisperse granular mixtures
,” Phys. Fluids
17
, 063303
(2005
).18.
V.
Garzó
, J. W.
Dufty
, and C. M.
Hrenya
, “Enskog theory for polydisperse granular mixtures—I: Navier-Stokes order transport
,” Phys. Rev. E
76
, 031303
(2007
).19.
V.
Garzó
, C. M.
Hrenya
, and J. W.
Dufty
, “Enskog theory for polydisperse granular mixtures—II: Sonine polynomial approximation
,” Phys. Rev. E
76
, 031304
(2007
).20.
J. A.
Murray
, V.
Garzó
, and C. M.
Hrenya
, “Enskog theory for polydisperse granular mixtures—III: Comparison of dense and dilute transport coefficients and equations of state for a binary mixture
,” Powder Technol.
220
, 24
–36
(2012
).21.
22.
M. N.
Bannerman
and L.
Lue
, “Exact on-event expressions for discrete potential systems
,” J. Chem. Phys.
133
, 124506
(2010
).23.
S.
Takada
, K.
Saitoh
, and H.
Hayakawa
, “Kinetic theory for dilute cohesive granular gases with a square well potential
,” Phys. Rev. E
94
, 012906
(2016
).24.
S.
Takada
and H.
Hayakawa
, “Rheology of dilute cohesive granular gases
,” Phys. Rev. E
97
, 042902
(2018
).25.
26.
L. D.
Landau
and E. M.
Lifshitz
, Mechanics
3rd ed., Course of Theoretical Physics (Butterworth-Heinemann
, Oxford
, 1976
), Vol. 1
.27.
M. G.
Chamorro
, F. V.
Reyes
, and V.
Garzó
, “Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow
,” Phys. Rev. E
92
, 052205
(2015
).28.
H.
Hayakawa
, S.
Takada
, and V.
Garzó
, “Kinetic theory of shear thickening for a moderately dense gas-solid suspension: From discontinuous thickening to continuous thickening
,” Phys. Rev. E
96
, 042903
(2017
).29.
A.
Santos
, V.
Garzó
, and J. W.
Dufty
, “Inherent rheology of a granular fluid in uniform shear flow
,” Phys. Rev. E
69
, 061303
(2004
).30.
S.
Chapman
and T. G.
Cowling
, The Mathematical Theory of Non Uniform Gases
(Cambridge University Press
, Cambridge
, 1970
).31.
M. N.
Bannerman
, R.
Sargant
, and L.
Lue
, “DynamO: A free O(N) general event-driven molecular dynamics simulator
,” J. Comput. Chem.
32
, 3329
–3338
(2011
).32.
A. W.
Lees
and S. F.
Edwards
, “The computer study of transport processes under extreme conditions
,” J. Phys. C
5
, 1921
(1972
).33.
N.
Brilliantov
, P. L.
Krapivsky
, A.
Bodrova
, F.
Spahn
, H.
Hayakawa
, V.
Stadnichuk
, and J.
Schmidt
, “Size distribution of particles in Saturn's rings from aggregation and fragmentation
,” Proc. Nat. Acad. Sci.
112
, 9536
–9541
(2015
).34.
A. I.
Osinsky
and N. V.
Brilliantov
, “Anomalous aggregation regimes of temperature-dependent Smoluchowski equations
,” Phys. Rev. E
105
, 034119
(2022
).35.
S.
Takada
, H.
Hayakawa
, A.
Santos
, and V.
Garzó
, “Enskog kinetic theory of rheology for a moderately dense inertial suspension
,” Phys. Rev. E
102
, 022907
(2020
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.