We develop the rheology of a dilute granular gas mixture. Motivated by the interaction of charged granular particles, we assume that the grains interact via a square shoulder and well potential. Employing a kinetic theory, we compute the temperature and the shear viscosity as a function of the shear rate. Numerical simulations confirm our results are above the critical shear rate. At a shear rate below a critical value, clustering of the particles occurs.

1.
L. B.
Schein
,
Electrophotography and Development Physics
(
Springer Berlin
,
Heidelberg
,
2013
), Vol.
14
.
2.
T.
Scheffler
and
D. E.
Wolf
, “
Collision rates in charged granular gases
,”
Granular Matter
4
,
103
113
(
2002
).
3.
T.
Pöschel
,
N. V.
Brilliantov
, and
T.
Schwager
, “
Long-time behavior of granular gases with impact-velocity dependent coefficient of restitution
,”
Physica A
325
,
274
283
(
2003
).
4.
S.
Takada
,
D.
Serero
, and
T.
Pöschel
, “
Homogeneous cooling state of dilute granular gases of charged particles
,”
Phys. Fluids
29
,
083303
(
2017
).
5.
S.
Takada
,
D.
Serero
, and
T.
Pöschel
, “
Transport coefficients for granular gases of electrically charged particles
,”
J. Fluid Mech.
935
,
A38
(
2022
).
6.
C.
Singh
and
M. G.
Mazza
, “
Early-stage aggregation in three-dimensional charged granular gas
,”
Phys. Rev. E
97
,
022904
(
2018
).
7.
C.
Singh
and
M. G.
Mazza
, “
Electrification in granular gases leads to constrained fractal growth
,”
Sci. Rep.
9
,
9049
(
2019
).
8.
P. K.
Haff
, “
Grain flow as a fluid-mechanical phenomenon
,”
J. Fluid Mech.
134
,
401
430
(
1983
).
9.
S.
McNamara
and
S.
Luding
, “
Energy nonequipartition in systems of inelastic, rough spheres
,”
Phys. Rev. E
58
,
2247
2250
(
1998
).
10.
V.
Garzó
and
J.
Dufty
, “
Homogeneous cooling state for a granular mixture
,”
Phys. Rev. E
60
,
5706
5713
(
1999
).
11.
S. R.
Dahl
,
C. M.
Hrenya
,
V.
Garzó
, and
J. W.
Dufty
, “
Kinetic temperatures for a granular mixture
,”
Phys. Rev. E
66
,
041301
(
2002
).
12.
V.
Garzó
, “
Tracer diffusion in granular shear flows
,”
Phys. Rev. E
66
,
021308
(
2002
).
13.
J. M.
Montanero
and
V.
Garzó
, “
Rheological properties in a low-density granular mixture
,”
Physica A
310
,
17
38
(
2002
).
14.
J. M.
Montanero
and
V.
Garzó
, “
Energy nonequipartition in a sheared granular mixture
,”
Mol. Simul.
29
,
357
362
(
2003
).
15.
V.
Garzó
and
J. M.
Montanero
, “
Effect of energy nonequipartition on the transport properties in a granular mixture
,”
Granular Matter
5
,
165
168
(
2003
).
16.
N. V.
Brilliantov
and
T.
Pöschel
,
Kinetic Theory of Granular Gases
(
Oxford University Press
,
Oxford
,
2004
).
17.
M.
Alam
and
S.
Luding
, “
Energy nonequipartition, rheology, and microstructure in sheared bidisperse granular mixtures
,”
Phys. Fluids
17
,
063303
(
2005
).
18.
V.
Garzó
,
J. W.
Dufty
, and
C. M.
Hrenya
, “
Enskog theory for polydisperse granular mixtures—I: Navier-Stokes order transport
,”
Phys. Rev. E
76
,
031303
(
2007
).
19.
V.
Garzó
,
C. M.
Hrenya
, and
J. W.
Dufty
, “
Enskog theory for polydisperse granular mixtures—II: Sonine polynomial approximation
,”
Phys. Rev. E
76
,
031304
(
2007
).
20.
J. A.
Murray
,
V.
Garzó
, and
C. M.
Hrenya
, “
Enskog theory for polydisperse granular mixtures—III: Comparison of dense and dilute transport coefficients and equations of state for a binary mixture
,”
Powder Technol.
220
,
24
36
(
2012
).
21.
V.
Garzó
,
Granular Gaseous Flows
(
Springer
,
2019
).
22.
M. N.
Bannerman
and
L.
Lue
, “
Exact on-event expressions for discrete potential systems
,”
J. Chem. Phys.
133
,
124506
(
2010
).
23.
S.
Takada
,
K.
Saitoh
, and
H.
Hayakawa
, “
Kinetic theory for dilute cohesive granular gases with a square well potential
,”
Phys. Rev. E
94
,
012906
(
2016
).
24.
S.
Takada
and
H.
Hayakawa
, “
Rheology of dilute cohesive granular gases
,”
Phys. Rev. E
97
,
042902
(
2018
).
25.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Addison Wesley
,
2002
).
26.
L. D.
Landau
and
E. M.
Lifshitz
,
Mechanics
3rd ed., Course of Theoretical Physics (
Butterworth-Heinemann
,
Oxford
,
1976
), Vol.
1
.
27.
M. G.
Chamorro
,
F. V.
Reyes
, and
V.
Garzó
, “
Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow
,”
Phys. Rev. E
92
,
052205
(
2015
).
28.
H.
Hayakawa
,
S.
Takada
, and
V.
Garzó
, “
Kinetic theory of shear thickening for a moderately dense gas-solid suspension: From discontinuous thickening to continuous thickening
,”
Phys. Rev. E
96
,
042903
(
2017
).
29.
A.
Santos
,
V.
Garzó
, and
J. W.
Dufty
, “
Inherent rheology of a granular fluid in uniform shear flow
,”
Phys. Rev. E
69
,
061303
(
2004
).
30.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non Uniform Gases
(
Cambridge University Press
,
Cambridge
,
1970
).
31.
M. N.
Bannerman
,
R.
Sargant
, and
L.
Lue
, “
DynamO: A free O(N) general event-driven molecular dynamics simulator
,”
J. Comput. Chem.
32
,
3329
3338
(
2011
).
32.
A. W.
Lees
and
S. F.
Edwards
, “
The computer study of transport processes under extreme conditions
,”
J. Phys. C
5
,
1921
(
1972
).
33.
N.
Brilliantov
,
P. L.
Krapivsky
,
A.
Bodrova
,
F.
Spahn
,
H.
Hayakawa
,
V.
Stadnichuk
, and
J.
Schmidt
, “
Size distribution of particles in Saturn's rings from aggregation and fragmentation
,”
Proc. Nat. Acad. Sci.
112
,
9536
9541
(
2015
).
34.
A. I.
Osinsky
and
N. V.
Brilliantov
, “
Anomalous aggregation regimes of temperature-dependent Smoluchowski equations
,”
Phys. Rev. E
105
,
034119
(
2022
).
35.
S.
Takada
,
H.
Hayakawa
,
A.
Santos
, and
V.
Garzó
, “
Enskog kinetic theory of rheology for a moderately dense inertial suspension
,”
Phys. Rev. E
102
,
022907
(
2020
).
You do not currently have access to this content.