A double T-type microchannel consisting of two T-junctions is used as the base unit of tree-like microchannels. Studying the breakup process and behavior of bubbles in T-type microchannels can help enhance the capability of microfluidic systems and microchannel heat exchangers. In this study, the bubble breakup process in a double T-type microchannel was simulated using a volume of fluid model via numerical simulation. The simulation results show a total of five regimes of bubble breakup with capillary numbers between 0.001 and 0.008 and dimensionless bubble lengths between 1 and 9, which are the non-breakup, “tunnel” breakup, obstructed breakup, merging symmetric breakup, and merging non-breakup. These five breakup regimes were studied in detail. At a high velocity of the gas phase and with a small size of the generated bubble, the bubble does not break up. Symmetric breakup regimes can be divided into two regimes: tunnel breakup and obstructed breakup. Shear force plays a significant role in the tunnel breakup regime. The obstructed breakup regime is mainly caused by the increase in pressure at the T-junction, which elongates and makes the bubble break up. In the merging symmetrical breakup regime, the bubble has a tunnel breakup process at the beginning. The shear force is small and cannot break up the bubble. The merged bubble breaks up under the action of the obstructed breakup regime. Bubbles are in the merging non-breakup regime mainly because they are too long to break up.

1.
S.
Kandlikar
,
S.
Garimella
,
D.
Li
 et al.,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
(
Elsevier
,
2005
).
2.
T.-C.
Hung
,
W.-M.
Yan
, and
W.-P.
Li
, “
Analysis of heat transfer characteristics of double-layered microchannel heat sink
,”
Int. J. Heat Mass Transfer
55
,
3090
3099
(
2012
).
3.
B.
Wang
,
Y.
Hu
,
Y.
He
,
N.
Rodionov
, and
J.
Zhu
, “
Dynamic instabilities of flow boiling in micro-channels: A review
,”
Appl. Therm. Eng.
214
,
118773
(
2022
).
4.
J.
Zhang
and
W.
Li
, “
Investigation of hydrodynamic and heat transfer characteristics of gas–liquid Taylor flow in vertical capillaries
,”
Int. Commun. Heat Mass Transfer
74
,
1
10
(
2016
).
5.
J.
Broughton
and
Y. K.
Joshi
, “
Flow boiling in geometrically modified microchannels
,”
Phys. Fluids
33
,
103308
(
2021
).
6.
X.
Li
,
L.
Jia
,
L.
Yin
, and
Z.
An
, “
A revised correlation based on heat transfer model of slug flow in mini/micro-channels
,”
Heat Mass Transfer
54
,
25
36
(
2018
).
7.
C.
Zhang
,
Y.
Chen
,
R.
Wu
, and
M.
Shi
, “
Flow boiling in constructal tree-shaped minichannel network
,”
Int. J. Heat Mass Transfer
54
,
202
209
(
2011
).
8.
A.
Bejan
and
M. R.
Errera
, “
Deterministic tree networks for fluid flow: Geometry for minimal flow resistance between a volume and one point
,”
Fractals
05
,
685
695
(
1997
).
9.
Y.
Chen
and
Z.
Deng
, “
Gas flow in micro tree-shaped hierarchical network
,”
Int. J. Heat Mass Transfer
80
,
163
169
(
2015
).
10.
C.
Zhang
,
X.
Zhang
,
Q.
Li
, and
L.
Wu
, “
Numerical study of bubble breakup in fractal tree-shaped microchannels
,”
Int. J. Mol. Sci.
20
,
5516
(
2019
).
11.
S.-Y.
Teh
,
R.
Lin
,
L.-H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
,
198
220
(
2008
).
12.
S. C.
Saha
,
I.
Francis
,
X.
Huang
, and
A. R.
Paul
, “
Heat transfer and fluid flow analysis in a realistic 16-generation lung
,”
Phys. Fluids
34
,
061906
(
2022
).
13.
V.
Tesař
, “
Bifurcating channels supplying ‘numbered-up’ microreactors
,”
Chem. Eng. Res. Des.
89
,
2507
2520
(
2011
).
14.
P.
Xu
,
A. P.
Sasmito
,
B.
Yu
, and
A.
Sadashiv Mujumdar
, “
Transport phenomena and properties in treelike networks
,”
Appl. Mech. Rev.
68
,
040802
(
2016
).
15.
D.
Tondeur
,
Y.
Fan
, and
L.
Luo
, “
Constructal optimization of arborescent structures with flow singularities
,”
Chem. Eng. Sci.
64
,
3968
3982
(
2009
).
16.
D.
Tondeur
and
L.
Luo
, “
Design and scaling laws of ramified fluid distributors by the constructal approach
,”
Chem. Eng. Sci.
59
,
1799
1813
(
2004
).
17.
Z.
Fan
,
X.
Zhou
,
L.
Luo
, and
W.
Yuan
, “
Experimental investigation of the flow distribution of a 2-dimensional constructal distributor
,”
Exp. Therm. Fluid Sci.
33
,
77
83
(
2008
).
18.
J.
Yue
 et al., “
Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors
,”
AIChE J.
56
,
298
(
2010
).
19.
C.
Wang
,
M.
Tian
,
J.
Zhang
,
G.
Zhang
, and
Y.
Zhang
, “
Numerical study on pressure drop and heat transfer characteristics of gas-liquid Taylor flow in a microchannel based on FFR method
,”
Int. Commun. Heat Mass Transfer
117
,
104802
(
2020
).
20.
L.
Zhang
,
D.
Peng
,
W.
Lyu
, and
F.
Xin
, “
Uniformity of gas and liquid two phases flowing through two microchannels in parallel
,”
Chem. Eng. J.
263
,
452
460
(
2015
).
21.
D. A.
Hoang
 et al., “
Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors
,”
Chem. Eng. J.
236
,
545
554
(
2014
).
22.
A. J.
Ammanath
,
S. K.
Samal
, and
M. K.
Moharana
, “
Taylor bubble flow distribution in multi cross-branched microchannels: A numerical investigation
,”
J. Braz. Soc. Mech. Sci. Eng.
44
,
296
(
2022
).
23.
H. S.
Damiri
and
H. K.
Bardaweel
, “
Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks
,”
Lab Chip
15
,
4187
4196
(
2015
).
24.
L.
Wang
,
Y.
Fan
, and
L.
Luo
, “
Lattice Boltzmann method for shape optimization of fluid distributor
,”
Comput. Fluids
94
,
49
57
(
2014
).
25.
D.
Tsaoulidis
,
V.
Dore
,
P.
Angeli
,
N. V.
Plechkova
, and
K. R.
Seddon
, “
Flow patterns and pressure drop of ionic liquid–water two-phase flows in microchannels
,”
Int. J. Multiphase Flow
54
,
1
10
(
2013
).
26.
S.
Lee
,
V. S.
Devahdhanush
, and
I.
Mudawar
, “
Pressure drop characteristics of large length-to-diameter two-phase micro-channel heat sinks
,”
Int. J. Heat Mass Transfer
115
,
1258
1275
(
2017
).
27.
S.
Mi
 et al., “
Effects of the gas feed on bubble formation in a microfluidic T-junction: Constant-pressure versus constant-flow-rate injection
,”
Ind. Eng. Chem. Res.
58
,
10092
10105
(
2019
).
28.
L.
Ménétrier-Deremble
and
P.
Tabeling
, “
Droplet breakup in microfluidic junctions of arbitrary angles
,”
Phys. Rev. E
74
,
035303
(
2006
).
29.
H.
Song
,
D. L.
Chen
, and
R. F.
Ismagilov
, “
Reactions in droplets in microfluidic channels
,”
Angew. Chem., Int. Ed.
45
,
7336
7356
(
2006
).
30.
T.
Fu
,
Y.
Ma
,
D.
Funfschilling
, and
H. Z.
Li
, “
Dynamics of bubble breakup in a microfluidic T-junction divergence
,”
Chem. Eng. Sci.
66
,
4184
4195
(
2011
).
31.
Z.
Wu
,
Z.
Cao
, and
B.
Sunden
, “
Flow patterns and slug scaling of liquid-liquid flow in square microchannels
,”
Int. J. Multiphase Flow
112
,
27
39
(
2019
).
32.
Q.
Zhang
,
H.
Liu
,
S.
Zhao
,
C.
Yao
, and
G.
Chen
, “
Hydrodynamics and mass transfer characteristics of liquid–liquid slug flow in microchannels: The effects of temperature, fluid properties and channel size
,”
Chem. Eng. J.
358
,
794
805
(
2019
).
33.
A. M.
Leshansky
,
S.
Afkhami
,
M.-C.
Jullien
, and
P.
Tabeling
, “
Obstructed breakup of slender drops in a microfluidic T junction
,”
Phys. Rev. Lett.
108
,
264502
(
2012
).
34.
M.-C.
Jullien
,
M.-J.
Tsang Mui Ching
,
C.
Cohen
,
L.
Menetrier
, and
P.
Tabeling
, “
Droplet breakup in microfluidic T-junctions at small capillary numbers
,”
Phys. Fluids
21
,
072001
(
2009
).
35.
B.
Chen
,
G.
Li
,
W.
Wang
, and
P.
Wang
, “
3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the volume-of-fluid method
,”
Appl. Therm. Eng.
88
,
94
101
(
2015
).
36.
D. R.
Link
,
S. L.
Anna
,
D. A.
Weitz
, and
H. A.
Stone
, “
Geometrically mediated breakup of drops in microfluidic devices
,”
Phys. Rev. Lett.
92
,
054503
(
2004
).
37.
M.
De Menech
, “
Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model
,”
Phys. Rev. E
73
,
031505
(
2006
).
38.
R.
Guo
,
T.
Fu
,
C.
Zhu
,
Y.
Yin
, and
Y.
Ma
, “
Hydrodynamics and mass transfer of gas-liquid flow in a tree-shaped parallel microchannel with T-type bifurcations
,”
Chem. Eng. J.
373
,
1203
1211
(
2019
).
39.
B.
Wei
 et al., “
Bubble breakup dynamics and flow behaviors of a surface-functionalized nanocellulose based nanofluid stabilized foam in constricted microfluidic devices
,”
J. Ind. Eng. Chem.
68
,
24
32
(
2018
).
40.
X.
Wang
,
Z.
Liu
, and
Y.
Pang
, “
Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations
,”
Chem. Eng. Sci.
197
,
258
268
(
2019
).
41.
Y.
Chen
and
Z.
Deng
, “
Hydrodynamics of a droplet passing through a microfluidic T-junction
,”
J. Fluid Mech.
819
,
401
434
(
2017
).
42.
R.
Azadi
,
J.
Wong
, and
D. S.
Nobes
, “
Experimental and analytical investigation of meso-scale slug bubble dynamics in a square capillary channel
,”
Phys. Fluids
32
,
083304
(
2020
).
43.
Y.
Pang
,
Y.
Lu
,
X.
Wang
, and
Z.
Liu
, “
Droplet behavior and its effects on flow characteristics in T-junction microchannels
,”
Phys. Fluids
33
,
062013
(
2021
).
44.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
45.
H.
Pham
,
L.
Wen
, and
H.
Zhang
, “
Numerical simulation and analysis of gas-liquid flow in a T-junction microchannel
,”
Adv. Mech. Eng.
4
,
231675
(
2012
).
46.
M.
Du
,
T.
Qi
,
W.
Fan
, and
H.
Chen
, “
Numerical investigation of bubble breakup in a four-branched microchannel based on non-Newtonian pseudoplastic fluid
,”
Asia-Pac. J. Chem. Eng.
15
,
e2393
(
2020
).
47.
F.
Guo
and
B.
Chen
, “
Numerical study on Taylor bubble formation in a micro-channel T-junction using VOF method
,”
Microgravity Sci. Technol.
21
,
51
58
(
2009
).
48.
J. H.
Xu
,
S. W.
Li
,
Y. J.
Wang
, and
G. S.
Luo
, “
Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device
,”
Appl. Phys. Lett.
88
,
133506
(
2006
).
You do not currently have access to this content.