With the development of large-scale tidal current turbines and the increase in tidal current velocity, the possibility of cavitation increases. Furthermore, unsteady cavitation is a complicated multiphase flow that causes power degradation of tidal current turbine blade. There has been no comprehensive investigation of it so far. In this study, the blade captured power is obtained at different cavitation numbers using the Schnerr–Sauer cavitation model. The numerical uncertainty for the mesh and the time step is calculated by the grid convergence index method. It has been shown that, when the cavitation number is 5 and 2, cavitation has no effect on the blade power. With the decrease in the cavitation number, the rise in cavitation intensity occurs when the vapor distribution area stretches from the blade tip to the blade root and from the leading edge to the trailing edge, respectively. With a fall in cavitation number to 1.3, the vapor volume fraction rises, and the viscosity of the mixed phase reduces, resulting in a reduction in viscous power. When the cavitation number is 0.8, there exists a larger region in which an absolute value of minimum pressure coefficient is less than the cavitation number, a smaller blade load is present, and the pressure difference power is substantially decreased. Because of the huge inverse pressure gradient created by cavitation, the negative pressure difference power is generated, resulting in a decline of the blade power coefficient to 14%, when the cavitation number is 0.5.

1.
A. S.
Bahaj
,
W. M. J.
Batten
, and
G.
McCann
, “
Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines
,”
Renewable Energy
32
(
15
),
2479
2490
(
2007
).
2.
D.
Wang
,
M.
Atlar
, and
R.
Sampson
, “
An experimental investigation on cavitation, noise, and slipstream characteristics of ocean stream turbines
,”
Proc. Inst. Mech. Eng., Part A
221
(
2
),
219
231
(
2007
).
3.
M. G.
De Giorgi
,
D.
Fontanarosa
, and
A.
Ficarella
, “
CFD data of unsteady cavitation around a hydrofoil, based on an extended Schnerr-Sauer model coupled with a nucleation model
,”
Data Brief
25
,
104226
(
2019
).
4.
V.
Hidalgo
,
X.
Escaler
, and
E.
Valencia
, “
Scale-adaptive simulation of unsteady cavitation around a Naca66 hydrofoil
,”
Appl. Sci.
9
(
18
),
3696
(
2019
).
5.
S.
Gopalan
and
J.
Katz
, “
Flow structure and modeling issues in the closure region of attached cavitation
,”
Phys. Fluids
12
(
4
),
895
911
(
2000
).
6.
B.
Huang
and
G. Y.
Wang
, “
Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil
,”
Sci. China Technol. Sci.
54
(
7
),
1801
1812
(
2011
).
7.
M. H.
Arabnejad
,
A.
Amini
,
M.
Farhat
, and
R. E.
Bensow
, “
Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation
,”
Int. J. Multiphase Flow
119
,
123
143
(
2019
).
8.
A. C.
Hansen
and
C. P.
Butterfield
, “
Aerodynamics of horizontal-axis wind turbines
,”
Annu. Rev. Fluid Mech.
25
,
115
(
1993
).
9.
S.
Li
,
A. M.
Zhang
,
R.
Han
, and
Q. W.
Ma
, “
3D full coupling model for strong interaction between a pulsating bubble and a movable sphere
,”
J. Comput. Phys
392
,
713
731
(
2019b
).
10.
W. C.
Liu
,
Y.
Kang
,
X. C.
Wang
,
Q.
Liu
, and
Z. L.
Fang
, “
Integrated CFD-aided theoretical demonstration of cavitation modulation in self-sustained oscillating jets
,”
Appl. Math. Model.
79
,
521
543
(
2020
).
11.
Y. S.
Zeng
,
Z. F.
Yao
,
J. Y.
Gao
,
Y. P.
Hong
,
F. J.
Wang
, and
F.
Zhang
, “
Numerical investigation of added mass and hydrodynamic damping on a blunt trailing edge hydrofoil
,”
J. Fluid Eng.
141
(
8
),
081108
(
2019
).
12.
G.
Zhang
,
Z. Y.
Wu
,
K. X.
Wu
,
Y. Q.
Ou
,
H. D.
Kim
, and
Z.
Lin
, “
Effect of the opening of a butterfly valve on the dynamic evolution of cavitation
,”
J. Mech. Sci. Technol.
36
(
7
),
3457
3467
(
2022
).
13.
A. H.
Liu
and
B. L.
Wang
, “
Numerical simulation of the three-dimensional unsteady cavitating flow around a twisted hydrofoil
,”
Ocean Eng.
188
,
106313
(
2019
).
14.
R. F.
Kunz
,
D. A.
Boger
,
D. R.
Stinebring
,
T. S.
Chyczewski
,
J. W.
Lindau
,
H. J.
Gibeling
,
S.
Venkateswaran
, and
T. R.
Govindan
, “
A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction
,”
Comput. Fluids
29
(
8
),
849
875
(
2000
).
15.
G. H.
Schnerr
and
J.
Sauer
, “
Physical and numerical modeling of unsteady cavitation dynamics
,” in
4th International Conference on Multiphase Flow
, New Orleans,
2001
.
16.
A. K.
Singhal
,
M. M.
Athavale
,
H.
Li
, and
Y.
Jiang
, “
Mathematical basis and validation of the full cavitation model
,”
J. Fluids Eng.
124
(
3
),
617
624
(
2002
).
17.
P. J.
Zwart
,
A. G.
Gerber
, and
T.
Belamri
, “
A two-phase flow model for predicting cavitation dynamics
,” in
5th International Conference on Multiphase Flow.
Yokohama, Japan,
2004
.
18.
B.
Huang
,
Y.
Zhao
, and
G. Y.
Wang
, “
Large eddy simulation of turbulent vortex cavitation interactions in transient sheet/cloud cavitating flows
,”
Comput. Fluids
92
,
113
124
(
2014
).
19.
B.
Ji
,
X. W.
Luo
,
R. E. A.
Arndt
, and
Y. L.
Wu
, “
Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction
,”
Ocean Eng.
87
,
64
77
(
2014
).
20.
B.
Ji
,
X. W.
Luo
,
R. E. A.
Arndt
, and
Y. L.
Wu
, “
Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil
,”
Int. J. Multiphase Flow
68
,
121
134
(
2015
).
21.
N.
Yilmaz
,
X. Q.
Dong
,
B.
Aktas
,
C. J.
Yang
,
M.
Altar
, and
P. A.
Fitzsimmons
, “
Experimental and numerical investigations of tip vortex cavitation for the propeller of a research vessel, The Princess Royal
,”
Ocean Eng.
215
,
107881
(
2020
).
22.
D. G.
Baek
,
H. S.
Yoon
,
J. H.
Jung
,
K. S.
Kim
, and
B. G.
Paik
, “
Effects of the advance ratio on the evolution of a propeller wake
,”
Comput. Fluid
118
(
1
),
32
43
(
2015
).
23.
R.
Huang
,
B.
Ji
,
X.
Luo
,
Z.
Zhai
, and
J.
Zhou
, “
Numerical investigation of cavitation vortex interaction in a mixed-flow waterjet pump
,”
J. Mech. Sci. Technol.
29
(
9
),
3707
3716
(
2015
).
24.
B.
Ji
,
X.
Luo
,
X.
Peng
,
Y.
Wu
, and
H.
Xu
, “
Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake
,”
Int. J. Multiphase Flow
43
(
43
),
13
21
(
2012
).
25.
Y.
Long
,
X. P.
Long
,
B.
Ji
, and
Z. D.
Qian
, “
Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil
,”
J. Hydrodyn.
29
(
4
),
610
620
(
2017
).
26.
N.
Kaufmann
,
T. H.
Carolus
, and
R.
Starzmann
, “
An enhanced and validated performance and cavitation prediction model for horizontal axis tidal turbines
,”
Int. J. Mar. Energy
19
,
145
163
(
2017
).
27.
W. C.
Shi
,
R.
Rosli
,
M.
Atlar
,
R.
Norman
,
D. Z.
Wang
, and
W. X.
Yang
, “
Hydrodynamic performance evaluation of a tidal turbine with leading-edge tubercles
,”
Ocean Eng.
117
,
246
253
(
2016
).
28.
R.
Noruzi
,
M.
Vahidzadeh
, and
A.
Riasi
, “
Design, analysis and predicting hydrokinetic performance of a horizontal marine current axial turbine by consideration of turbine installation depth
,”
Ocean Eng.
108
,
789
798
(
2015
).
29.
H. C.
Buckland
,
I.
Masters
,
J. A. C
Orme
, and
T.
Baker
, “
Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines
,”
Proc. Inst. Mech. Eng., Part A
227
(
4
),
219
231
(
2013
).
30.
R.
Rosli
,
w
Shi
,
B.
Aktas
,
R.
Norman
, and
M.
Altar
, “
Cavitation observations, underwater radiated noise measurements and full-scale predictions of the Hydro-Spinna turbine
,”
Ocean Eng.
210
,
107536
(
2020
).
31.
Z.
Lin
,
J.
Tao
,
D.
Yin
, and
Z.
Zhu
, “
Numerical study on cavitation over flat hydrofoils with arc obstacles
,”
Phys. Fluids
33
(
8
),
085101
(
2021
).
32.
W. C.
Shi
,
M.
Atlar
,
R.
Rosli
,
B.
Aktas
, and
R.
Norman
, “
Cavitation observations and noise measurements of horizontal axis tidal turbines with biomimetic blade leading-edge designs
,”
Ocean Eng.
121
,
143
155
(
2016
).
33.
T.
Sun
,
Y.
Wei
, and
L.
Zou
, “
Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid
,”
Int. J. Multiphase Flow
111
,
82
100
(
2019
).
34.
A.
Gnanaskandan
and
K.
Mahesh
, “
Large eddy simulation of the transition from sheet to cloud cavitation over a wedge
,”
Int. J. Multiphase Flow
83
,
86
102
(
2016
).
35.
B.
Che
,
L.
Cao
, and
N.
Chu
, “
Dynamic behaviors of re-entrant jet and cavity shedding during transitional cavity oscillation on NACA0015 hydrofoil
,”
J. Fluid Eng.
141
(
6
),
061101
(
2019
).
36.
R. E.
Arndt
,
C.
Song
,
M.
Kjeldsen
,
J.
He
, and
A.
Keller
, “
Instability of partial cavitation: A numerical/experimental approach
,” in
Proceedings of the Twenty-Third Symposium on Naval Hydrodynamics
(
Val de Reuil
,
France
,
2000
).
37.
Q.
Le
,
J. P.
Franc
, and
J. M.
Michel
, “
Partial cavities: Pressure pulse distribution around cavity closure
,”
J. Fluids Eng.
115
,
249
254
(
1993
).
38.
M. S.
Karaalioglu
and
S.
Bal
, “
Performance prediction of cavitating marine current turbine by BEMT based on CFD
,”
Ocean Eng.
255
,
111221
(
2022
).
39.
H. P.
Picanco
,
A. K. F.
de Lima
,
D.
Vaz
,
E. F.
Lins
, and
J. R. P.
Vaz
, “
Cavitation inception on hydrokinetic turbine blades shrouded by diffuser
,”
Sustainability
14
(
12
),
7067
(
2022
).
40.
Y.
Long
,
X. P.
Long
,
B.
Ji
, and
T.
Xing
, “
Verification and validation of Large Eddy Simulation of attached cavitating flow around a Clark-Y hydrofoil
,”
Int. J. Multiphase Flow
115
,
93
107
(
2019
).
41.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence modeling for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
42.
L. J. P.
Andrew
,
S.
Martin
, and
Y. L.
Siow
, “
Modelling high Re flow around a 2D cylindrical bluff body using the k-ω (SST) turbulence model
,”
Prog. Comput. Fluid Dyn.
16
(
1
),
48
57
(
2016
).
43.
Y.
Long
,
X. P.
Long
,
B.
Ji
, and
H. B.
Huang
, “
Numerical simulations of cavitating turbulent flow around a marine propeller behind the hull with analyses of the vorticity distribution and particle tracks
,”
Ocean Eng.
189
,
106310
(
2019
).
44.
Siements
,
STAR-CCM+User Guide
(
Siements
,
2018
).
45.
W.
Li
,
H. B.
Zhou
,
H. W.
Liu
,
Y. G.
Lin
, and
Q. K.
Xu
, “
Review on the blade design technologies of tidal current turbine
,”
Renewable Sustainable Energy Rev.
63
,
414
422
(
2016
).
46.
H. W.
Liu
,
H. B.
Zhou
,
Y. G.
Lin
,
W.
Li
, and
H. G.
Gu
, “
Design and test of 1/5th scale horizontal axis tidal current turbine
,”
China Ocean Eng.
30
,
407
420
(
2016
).
47.
Y. J.
Gao
,
H. W.
Liu
,
Y. G.
Lin
,
Y. J.
Gu
, and
Y. M.
Ni
, “
Hydrodynamic analysis of tidal current turbine under water-sediment conditions
,”
J. Mar. Sci. Eng.
10
(
4
),
515
(
2022
).
48.
Q. K.
Xu
,
W.
Li
,
H. W.
Liu
, and
Y. G.
Lin
, “
Load analysis of a 120 kW horizontal axis tidal current power generation turbine
,”
J. Ocean Technol.
33
(
4
),
92
97
(
2014
).
49.
M.
Drela
, “
XFOIL: An analysis and design system for low Reynolds number airfoils
,” in
Low Reynolds Number Aerodynamic
(
Springer
,
1989
), pp.
1
12
.
50.
C. S.
Koksal
,
O.
Usta
,
B.
Aktas
,
M.
Altar
, and
E.
Korkut
, “
Numerical prediction of cavitation erosion to investigate the effect of wake on marine propellers
,”
Ocean Eng.
239
,
109820
(
2021
).
51.
See https://www.pointwise.com/yplus/index.html for “Compute Grid Spacing for a Given Y+.”
52.
D. J.
Roache
, “
Perspective: A method for uniform reporting of grid refinement studies
,”
J. Fluids Eng.
116
(
34
),
403
413
(
1994
).
53.
H. K.
Versteeg
and
W.
Malalasekera
,
An Introduction to Computational Fluid Dynamic: The Finite Volume Method Second Edition
(
Pearson Education
,
Edinburgh Gate
,
2007
), pp.
191
192
.
54.
ITTC
, in
Proceedings of 26th International Towing Tank Conference (ITTC)
, Recommended Procedures and Guidelines, Cavitation Induced Erosion on Propellers, Rudders and Appendages Model Scale Experiments,
2011
.
You do not currently have access to this content.